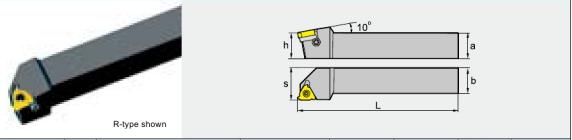


TURNING

How to select threading tools


Structure of threading tools selected table

- Categorized as external threading and internal threading according to machining type
- Separately listed out according to series.

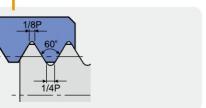
Dimensions of product

Indicating external threading or internal threading

External threading tools

Type	Stock	Basic dimensions(mm)			Applicable inserts	Inserts screw	Shim	Shim screw	Wrench
		a	h	b					
1616H16	▲	16	16	16	100	20			
2020K16	▲	20	20	20	125	25			
2525M16	▲	25	25	25	150	32			
3225P16	▲	32	32	25	170	32			
3232P16	▲	32	32	32	170	40			
2525M22	▲	25	25	25	150	32			
3225P22	▲	32	32	25	170	32			
3232P22	▲	32	32	32	170	40			
4040S22	△	40	40	40	250	50			

SWR


SWL

▲ Stock available △ Make-to-order

Threading insert type
Including type, standard, tolerance class

ISO metric thread (with end)

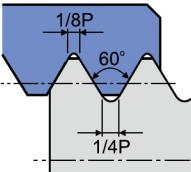
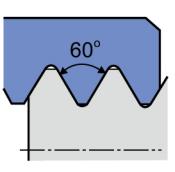
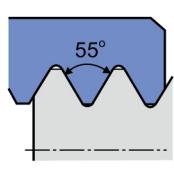
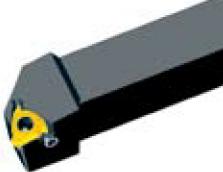
ISO 965-1980 DIN 13
GB/T 197-2003 Tolerance class: 6g/6H

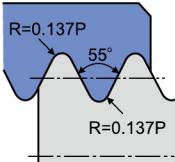
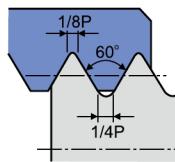
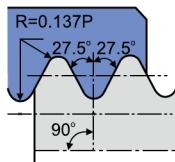
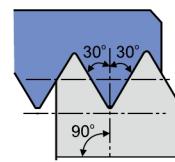
External thread

Type		Basic dimensions(mm)				Recommended coating grade	
The right hand tools	The left hand tools	Pitch	S	ØI.C	ød	R	L
RT16.01W-0.50GM	LT16.01W-0.50GM	0.50	3.97	9.525	4.4	○	○
RT16.01W-0.75GM	LT16.01W-0.75GM	0.75	3.97	9.525	4.4	○	○
RT16.01W-1.00GM	LT16.01W-1.00GM	1.00	3.97	9.525	4.4	○	○
RT16.01W-1.25GM	LT16.01W-1.25GM	1.25	3.97	9.525	4.4	★	○
RT16.01W-1.50GM	LT16.01W-1.50GM	1.50	3.97	9.525	4.4	★	★
RT16.01W-1.75GM	LT16.01W-1.75GM	1.75	3.97	9.525	4.4	★	○
RT16.01W-2.00GM	LT16.01W-2.00GM	2.00	3.97	9.525	4.4	★	★
RT16.01W-2.50GM	LT16.01W-2.50GM	2.50	3.97	9.525	4.4	★	○
RT16.01W-3.00GM	LT16.01W-3.00GM	3.00	3.97	9.525	4.4	★	○
RT22.01W-3.50GM	LT22.01W-3.50GM	3.50	5.56	12.7	5.5	★	○
RT22.01W-4.00GM	LT22.01W-4.00GM	4.00	5.56	12.7	5.5	★	○
RT22.01W-4.50GM	LT22.01W-4.50GM	4.50	5.56	12.7	5.5	★	○
RT22.01W-5.00GM	LT22.01W-5.00GM	5.00	5.56	12.7	5.5	★	○
RT22.01W-5.50GM	LT22.01W-5.50GM	5.50	5.56	12.7	5.5	○	○
RT22.01W-6.00GM	LT22.01W-6.00GM	6.00	5.56	12.7	5.5	★	○

★ Recommended grade (always stock available) ● Available grade (always stock available) ○ Make-to-order

Product specification





Including type (right hand and left hand), basic dimensions, applicable inserts, spare parts





Dimension diagram of insert

TURNING

Threading Tools

Threading tools overview	A264-A265
Introduction on threading insert grade and chipbreaker	A266
Threading insert	A267-A274
Threading insert code key	A267
ISO metric external thread	A268-A269
General pitch thread	A270
Whitworth thread	A271
Unified thread	A272
British standard pipe thread	A273
American standard pipe thread	A274
Threading tools	A275-A277
Threading tools code key	A275
External threading tools	A276
Internal threading tools	A277
Application information on threading	A278-A288

Applications		For general use		
Legend				
Thread name		ISO metric thread With end	General pitch thread Without end	General pitch thread Without end
Profil		GM	60	55
Shape of insert (length: 11, 16, 22mm)		R style shown 	R style shown 	R style shown
Tool holder	Pitch	Dimensions (mm) (H×W×L) (Dia×L×Min. dia)	Pitch/mm	Pitch/mm (pitch/Inch)
External thread		16×16×100 20×20×125 25×25×150 32×25×170 32×32×170 40×40×250	0.5~6.0	0.5~5.0 (5~48)
Internal thread		16×125×12 16×150×16 16×150×20 20×150×25 20×180×25 25×150×32 32×200×40 32×250×40 40×300×50 50×350×63	0.5~6.0	0.5~5.0 (5~48)

Applications	For general use	For aerospace industry	Heater, gas and water pipe thread	For gas and water faucet and pipe connection	
Legend					
Thread name	Whitworth thread	Unified thread (American standard threads)	British standard taper pipe threads	American standard taper pipe threads	
Profil	W	UN	BSPT	NPT	
Shape of insert (length: 11, 16, 22mm)	R style shown 	R style shown 	R style shown 	R style shown 	
Dimensions (mm) (H×W×L) (Dia×L×Min. dia)	Pitch/mm (pitch/Inch)	Pitch/mm (pitch/Inch)	Pitch/mm (pitch/Inch)	Pitch/mm (pitch/Inch)	
External thread	16×16×100 20×20×125 25×25×150 32×25×170 32×32×170 40×40×250	8~16	8~20	11~28	8~27
Internal thread	16×125×12 16×150×16 16×150×20 20×150×25 20×180×25 25×150×32 32×200×40 32×250×40 40×300×50 50×350×63	8~16	8~20	11~28	8~27

Golden TiN coating on the surface can diminish friction and help identify abrasion.

The inner layer of nc-TiAlN coating has outstanding wear resistance.

Threading grade YBG201 has been upgraded to nc-TiAlN

YBG201

TiN and PVD coated alloy has good toughness and wear resistance. It is a special grade for machining of carbon steel, stainless steel and cast iron steel, etc.

Functions and applications of wiper for threading inserts

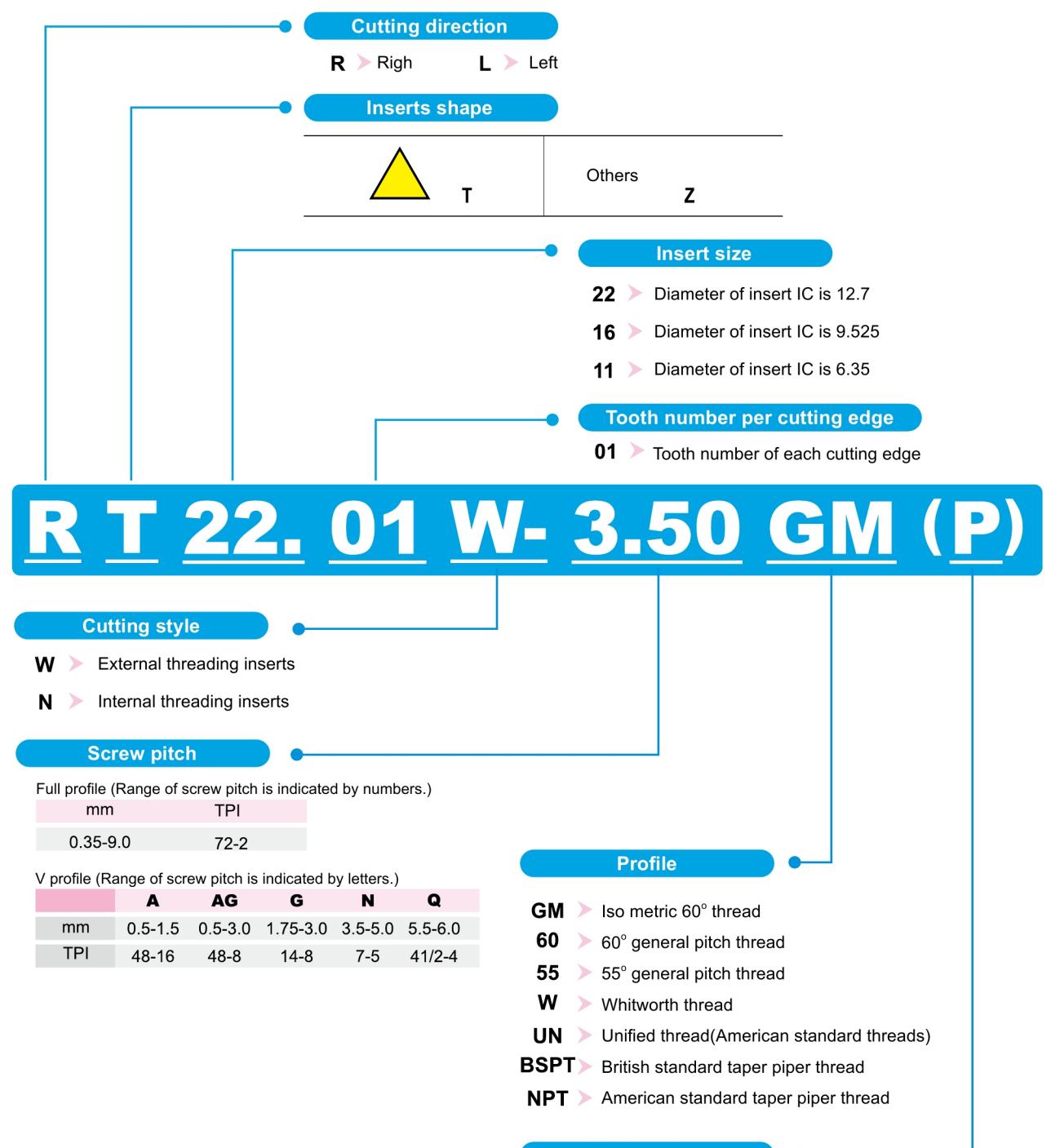
Reduce machining procedures

Before threading, it is unnecessary to finish the threaded part, which could be done by wiper to make the major diameter achieve the desired dimensions and surface quality.

Automatically remove burrs

The wiper on the threading insert realizes finishing on major diameter of machined threading, making it unnecessary to remove burrs after machining and ensuring good surface quality.

Design features of threading inserts' chipbreaker

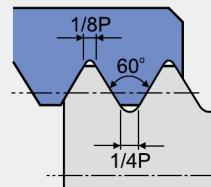

Outstanding chip breaking performance

Corrugated chipbreaker on the rake face of threading inserts lift the chip flow, direct its movement along the front of chipbreaker and control its shape for a small curvature radius.

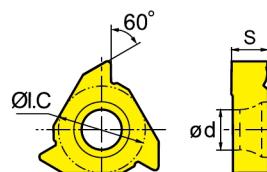
Chipbreaker design with good generality

Because of the special chipbreaker structure, the moving, curling and breaking of chips are mainly controlled by the insert itself. Therefore, desirable results can be obtained for different materials and with different cutting parameters.

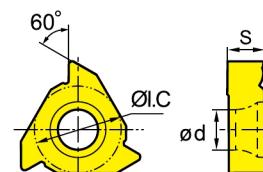
Threading inserts code key


A

General
turningParting and
grooving


Threading

Threading insert


ISO metric thread (with end)

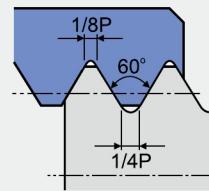
ISO 965-1980 DIN 13
GB/T 197-2003 Tolerance class: 6g/6H

R type

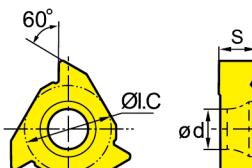
L type

	Type		Basic dimensions(mm)				Recommended coating grade		
	The right hand tools	The left hand tools	Pitch	S	ØI.C	Ød	YBG201		
							R	L	
External thread	RT16.01W-0.50GM	LT16.01W-0.50GM	0.50	3.97	9.525	4.4	○	○	
	RT16.01W-0.75GM	LT16.01W-0.75GM	0.75	3.97	9.525	4.4	○	○	
	RT16.01W-1.00GM	LT16.01W-1.00GM	1.00	3.97	9.525	4.4	○	○	
	RT16.01W-1.25GM	LT16.01W-1.25GM	1.25	3.97	9.525	4.4	★	○	
	RT16.01W-1.50GM	LT16.01W-1.50GM	1.50	3.97	9.525	4.4	★	★	
	RT16.01W-1.75GM	LT16.01W-1.75GM	1.75	3.97	9.525	4.4	★	○	
	RT16.01W-2.00GM	LT16.01W-2.00GM	2.00	3.97	9.525	4.4	★	★	
	RT16.01W-2.50GM	LT16.01W-2.50GM	2.50	3.97	9.525	4.4	★	○	
	RT16.01W-3.00GM	LT16.01W-3.00GM	3.00	3.97	9.525	4.4	★	○	
	RT22.01W-3.50GM	LT22.01W-3.50GM	3.50	5.56	12.7	5.5	★	○	
	RT22.01W-4.00GM	LT22.01W-4.00GM	4.00	5.56	12.7	5.5	★	○	
	RT22.01W-4.50GM	LT22.01W-4.50GM	4.50	5.56	12.7	5.5	★	○	
	RT22.01W-5.00GM	LT22.01W-5.00GM	5.00	5.56	12.7	5.5	★	○	
	RT22.01W-5.50GM	LT22.01W-5.50GM	5.50	5.56	12.7	5.5	○	○	
	RT22.01W-6.00GM	LT22.01W-6.00GM	6.00	5.56	12.7	5.5	★	○	

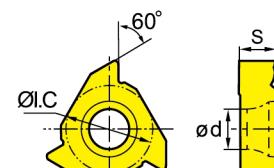
★Recommended grade (always stock available)


●Available grade (always stock available)

○Make-to-order



ISO metric thread (with end)


ISO 965-1980 DIN 13
GB/T 197-2003 Tolerance class: 6g/6H

R type

L type

	Type		Basic dimensions(mm)				Recommended coating grade	
	The right hand tools	The left hand tools	Pitch	S	ØI.C	Ød	YBG201	
							R	L
Internal thread	RT11.01N-0.50GM	LT11.01N-0.50GM	0.50	3.18	6.35	2.8	○	○
	RT11.01N-0.75GM	LT11.01N-0.75GM	0.75	3.18	6.35	2.8	○	○
	RT11.01N-1.00GM	LT11.01N-1.00GM	1.00	3.18	6.35	2.8	○	○
	RT11.01N-1.25GM	LT11.01N-1.25GM	1.25	3.18	6.35	2.8	○	○
	RT11.01N-1.50GM	LT11.01N-1.50GM	1.50	3.18	6.35	2.8	★	○
	RT11.01N-1.75GM	LT11.01N-1.75GM	1.75	3.18	6.35	2.8	○	○
	RT11.01N-2.00GM	LT11.01N-2.00GM	2.00	3.18	6.35	2.8	★	○
	RT16.01N-0.50GM	LT16.01N-0.50GM	0.50	3.97	9.525	4.4	○	○
	RT16.01N-0.75GM	LT16.01N-0.75GM	0.75	3.97	9.525	4.4	○	○
	RT16.01N-1.00GM	LT16.01N-1.00GM	1.00	3.97	9.525	4.4	★	○
	RT16.01N-1.25GM	LT16.01N-1.25GM	1.25	3.97	9.525	4.4	○	○
	RT16.01N-1.50GM	LT16.01N-1.50GM	1.50	3.97	9.525	4.4	★	★
	RT16.01N-1.75GM	LT16.01N-1.75GM	1.75	3.97	9.525	4.4	○	○
	RT16.01N-2.00GM	LT16.01N-2.00GM	2.00	3.97	9.525	4.4	★	★
	RT16.01N-2.50GM	LT16.01N-2.50GM	2.50	3.97	9.525	4.4	★	★
	RT16.01N-3.00GM	LT16.01N-3.00GM	3.00	3.97	9.525	4.4	★	★
	RT22.01N-3.50GM	LT22.01N-3.50GM	3.50	5.56	12.7	5.5	○	○
	RT22.01N-4.00GM	LT22.01N-4.00GM	4.00	5.56	12.7	5.5	★	○
	RT22.01N-4.50GM	LT22.01N-4.50GM	4.50	5.56	12.7	5.5	○	○
	RT22.01N-5.00GM	LT22.01N-5.00GM	5.00	5.56	12.7	5.5	★	○
	RT22.01N-5.50GM	LT22.01N-5.50GM	5.50	5.56	12.7	5.5	○	○
	RT22.01N-6.00GM	LT22.01N-6.00GM	6.00	5.56	12.7	5.5	★	○

★Recommended grade (always stock available)

●Available grade (always stock available)

○Make-to-order

A

General
turningParting and
grooving

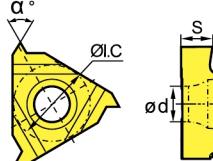
Threading

Threading insert

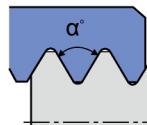
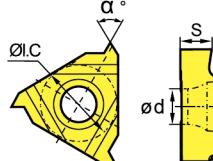
General pitch thread (without end)

A

General turning

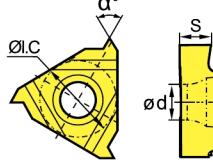

Parting and grooving

Threading

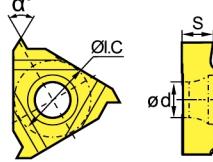


Threading insert

R type

L type

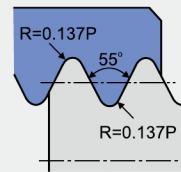

* With chipbreaker

		Type		Basic dimensions(mm)					Recommended coating grade		
		The right hand tools	The left hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	Ød	α°	YBG201	R	L
External thread	60°	RT16.01W-A60	LT16.01W-A60	0.5-1.5(48-16)	3.97	9.525	4.4	60°	★	○	
		RT16.01W-G60	LT16.01W-G60	1.75-3.0(14-8)	3.97	9.525	4.4	60°	○	○	
		RT16.01W-G60P*	LT16.01W-G60P*	1.75-3.0(14-8)	3.97	9.525	4.4	60°	★	○	
		RT16.01W-AG60	LT16.01W-AG60	0.5-3.0(48-8)	3.97	9.525	4.4	60°	★	○	
		RT22.01W-N60P*	LT22.01W-N60P*	3.5-5.0(7-5)	5.56	12.7	5.5	60°	○	○	
	55°	RT16.01W-A55	LT16.01W-A55	0.5-1.5(48-16)	3.97	9.525	4.4	55°	○	○	
		RT16.01W-G55	LT16.01W-G55	1.75-3.0(14-8)	3.97	9.525	4.4	55°	○	○	
		RT16.01W-G55P*	LT16.01W-G55P*	1.75-3.0(14-8)	3.97	9.525	4.4	55°	★	★	
		RT16.01W-AG55	LT16.01W-AG55	0.5-3.0(48-8)	3.97	9.525	4.4	55°	★	○	
		RT22.01W-N55P*	LT22.01W-N55P*	3.5-5.0(7-5)	5.56	12.7	5.5	55°	○	○	

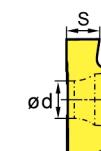
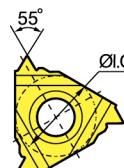

★ Recommended grade (always stock available) ● Available grade (always stock available) ○ Make-to-order

R type

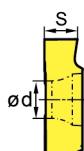
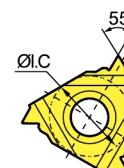
L type


* With chipbreaker

		Type		Basic dimensions(mm)					Recommended coating grade		
		The right hand tools	The left hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	Ød	α°	YBG201	R	L
Internal thread	60°	RT16.01N-A60	LT16.01N-A60	0.5-1.5 (48-16)	3.97	9.525	4.4	60°	○	○	
		RT16.01N-G60	LT16.01N-G60	1.75-3.0(14-8)	3.97	9.525	4.4	60°	○	○	
		RT16.01N-G60P*	LT16.01N-G60P*	1.75-3.0(14-8)	3.97	9.525	4.4	60°	★	○	
		RT16.01N-AG60	LT16.01N-AG60	0.5-3.0 (48-8)	3.97	9.525	4.4	60°	★	○	
		RT22.01N-N60P*	LT22.01N-N60P*	3.5-5.0 (7-5)	5.56	12.7	5.5	60°	○	○	
	55°	RT16.01N-A55	LT16.01N-A55	0.5-1.5(48-16)	3.97	9.525	4.4	55°	○	○	
		RT16.01N-G55	LT16.01N-G55	1.75-3.0(14-8)	3.97	9.525	4.4	55°	○	○	
		RT16.01N-G55P*	LT16.01N-G55P*	1.75-3.0(14-8)	3.97	9.525	4.4	55°	★	○	
		RT16.01N-AG55	LT16.01N-AG55	0.5-3.0(48-8)	3.97	9.525	4.4	55°	★	○	
		RT22.01N-N55P*	LT22.01N-N55P*	3.5-5.0(7-5)	5.56	12.7	5.5	55°	○	○	



★ Recommended grade (always stock available) ● Available grade (always stock available) ○ Make-to-order

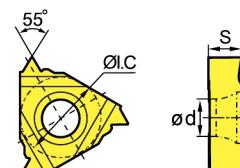
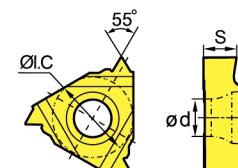
Whitworth thread (with end)



ISO 228/1:1982,
DIN 259, B.S.84:1956
Tolerance class: Medium class A

R type

L type

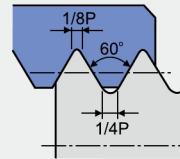
	Type		Basic dimensions(mm)				Recommended coating grade	
	The right hand tools	The left hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	Ød	YBG201	
							R	L
External thread	RT16.01W-8W	LT16.01W-8W	8	3.97	9.525	4.4	○	○
	RT16.01W-9W	LT16.01W-9W	9	3.97	9.525	4.4	○	○
	RT16.01W-10W	LT16.01W-10W	10	3.97	9.525	4.4	○	○
	RT16.01W-11W	LT16.01W-11W	11	3.97	9.525	4.4	○	○
	RT16.01W-12W	LT16.01W-12W	12	3.97	9.525	4.4	○	○
	RT16.01W-14W	LT16.01W-14W	14	3.97	9.525	4.4	○	○
	RT16.01W-16W	LT16.01W-16W	16	3.97	9.525	4.4	○	○



★Recommended grade (always stock available)

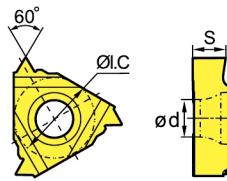
●Available grade (always stock available)

○Make-to-order

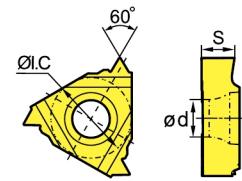
R type


	Type		Basic dimensions(mm)				Recommended coating grade	
	The right hand tools	The left hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	Ød	YBG201	
							R	L
Internal thread	RT16.01N-8W	LT16.01N-8W	8	3.97	9.525	4.4	○	○
	RT16.01N-9W	LT16.01N-9W	9	3.97	9.525	4.4	○	○
	RT16.01N-10W	LT16.01N-10W	10	3.97	9.525	4.4	○	○
	RT16.01N-11W	LT16.01N-11W	11	3.97	9.525	4.4	○	○
	RT16.01N-12W	LT16.01N-12W	12	3.97	9.525	4.4	○	○
	RT16.01N-14W	LT16.01N-14W	14	3.97	9.525	4.4	○	○
	RT16.01N-16W	LT16.01N-16W	16	3.97	9.525	4.4	○	○

★Recommended grade (always stock available)


●Available grade (always stock available)

○Make-to-order

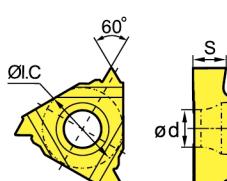

Unified thread (with end)

ASME B1.1-1989
Tolerance class: 2A/2B

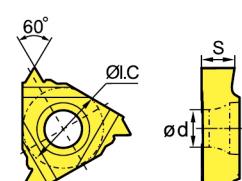
R type

L type

	Type		Basic dimensions(mm)				Recommended coating grade	
	The right hand tools	The left hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	Ød	YBG201	
							R	L
External thread	RT16.01W-8UN	LT16.01W-8UN	8	3.97	9.525	4.4	○	○
	RT16.01W-10UN	LT16.01W-10UN	10	3.97	9.525	4.4	○	○
	RT16.01W-12UN	LT16.01W-12UN	12	3.97	9.525	4.4	○	○
	RT16.01W-14UN	LT16.01W-14UN	14	3.97	9.525	4.4	○	○
	RT16.01W-16UN	LT16.01W-16UN	16	3.97	9.525	4.4	○	○
	RT16.01W-18UN	LT16.01W-18UN	18	3.97	9.525	4.4	○	○
	RT16.01W-20UN	LT16.01W-20UN	20	3.97	9.525	4.4	○	○


★Recommended grade (always stock available)

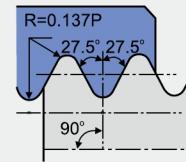
● Available grade (always stock available)


○ Make-to-order

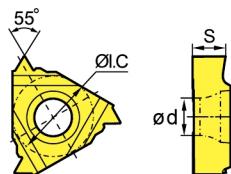
R type

L type

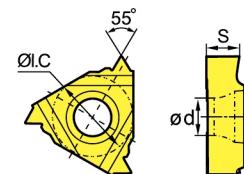
	Type		Basic dimensions(mm)				Recommended coating grade	
	The right hand tools	The left hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	Ød	YBG201	
							R	L
Internal thread	RT16.01N-8UN	LT16.01N-8UN	8	3.97	9.525	4.4	○	○
	RT16.01N-10UN	LT16.01N-10UN	10	3.97	9.525	4.4	○	○
	RT16.01N-12UN	LT16.01N-12UN	12	3.97	9.525	4.4	○	○
	RT16.01N-14UN	LT16.01N-14UN	14	3.97	9.525	4.4	○	○
	RT16.01N-16UN	LT16.01N-16UN	16	3.97	9.525	4.4	○	○
	RT16.01N-18UN	LT16.01N-18UN	18	3.97	9.525	4.4	○	○
	RT16.01N-20UN	LT16.01N-20UN	20	3.97	9.525	4.4	○	○
	RT16.01N-24UN	LT16.01N-24UN	24	3.97	9.525	4.4	○	○


★Recommended grade (always stock available)

● Available grade (always stock available)

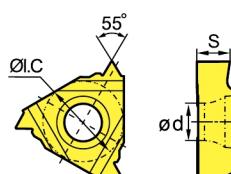

○ Make-to-order

British standard taper pipe thread (with end)

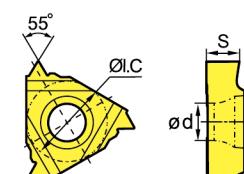

ISO 7/1:1994
B.S.21:1985
Standard BSPT

R type

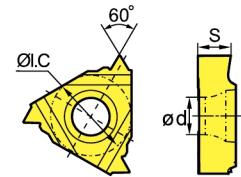
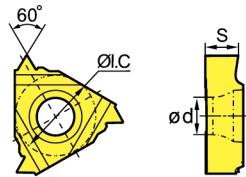
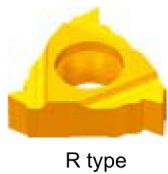
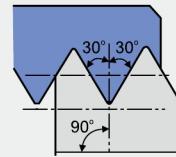
L type



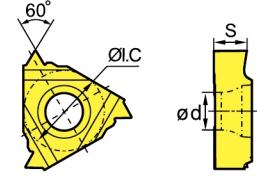
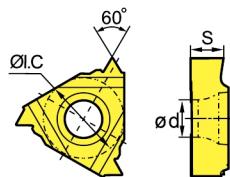
	Type		Basic dimensions(mm)				Recommended coating grade	
			Pitch/mm (pitch/inch)	S	ØI.C	ød	YBG201	
							R	L
External thread	RT16.01W-11 BSPT	LT16.01W-11 BSPT	11	3.97	9.525	4.4	○	○
	RT16.01W-14 BSPT	LT16.01W-14 BSPT	14	3.97	9.525	4.4	○	○
	RT16.01W-19 BSPT	LT16.01W-19 BSPT	19	3.97	9.525	4.4	○	○
	RT16.01W-28 BSPT	LT16.01W-28 BSPT	28	3.97	9.525	4.4	○	○


★ Recommended grade (always stock available) ● Available grade (always stock available) ○ Make-to-order

R type





L type

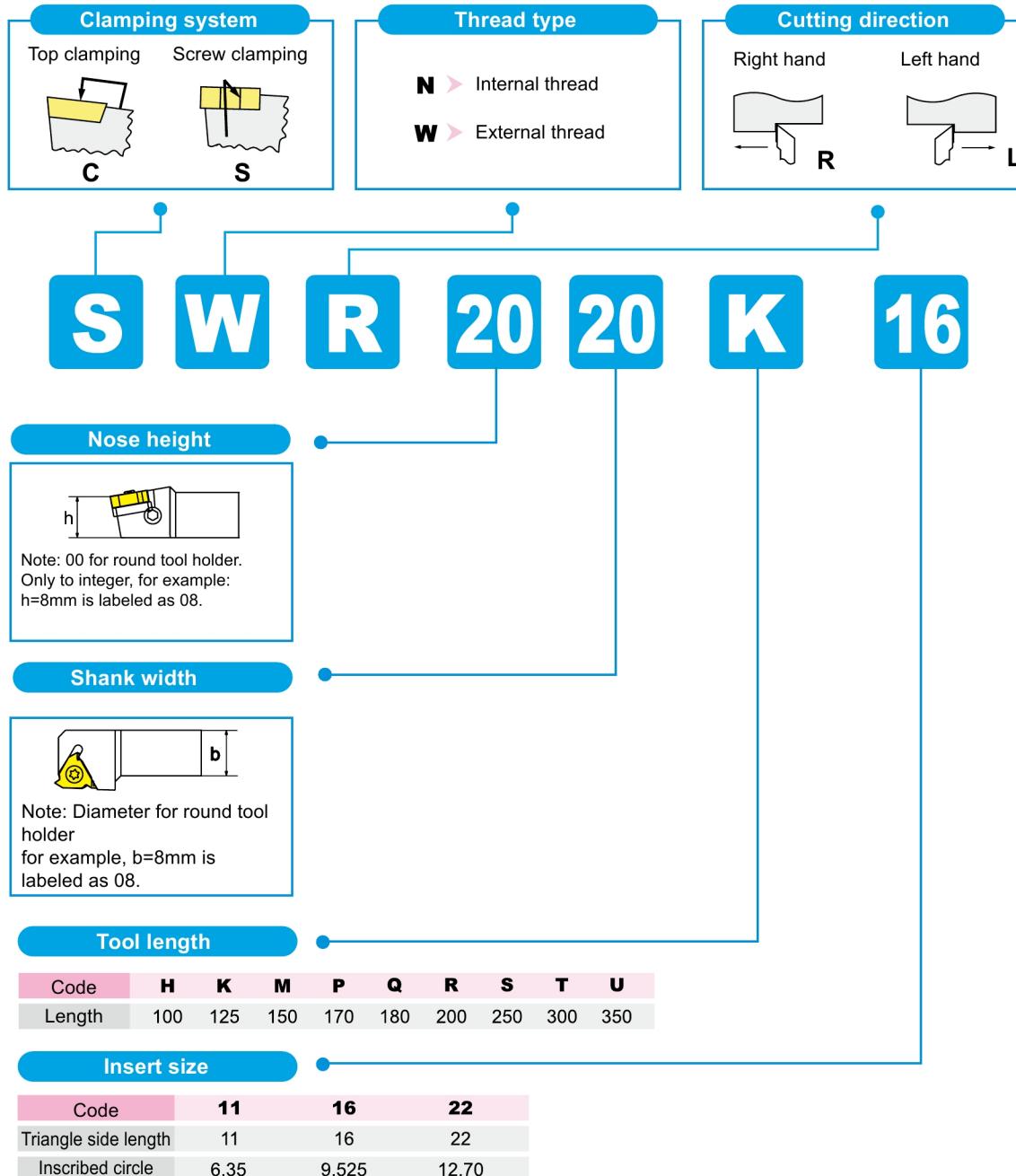
	Type		Basic dimensions(mm)				Recommended coating grade	
			Pitch/mm (pitch/inch)	S	ØI.C	ød	YBG201	
							R	L
Internal thread	RT16.01N-11 BSPT	LT16.01N-11 BSPT	11	3.97	9.525	4.4	○	○
	RT16.01N-14 BSPT	LT16.01N-14 BSPT	14	3.97	9.525	4.4	○	○
	RT16.01N-19 BSPT	LT16.01N-19 BSPT	19	3.97	9.525	4.4	○	○
	RT16.01N-28 BSPT	LT16.01N-28 BSPT	28	3.97	9.525	4.4	○	○



★ Recommended grade (always stock available) ● Available grade (always stock available) ○ Make-to-order

American standard taper pipe thread (with end)

ASME B1.20.1-1983
Standard NPT

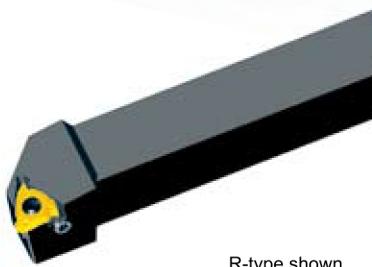
	Type		Basic dimensions(mm)				Recommended coating grade	
	The right hand tools	The left hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	Ød	YBG201	
							R	L
External thread	RT16.01W-8NPT	LT16.01W-8NPT	8	3.97	9.525	4.4	○	○
	RT16.01W-11.5 NPT	LT16.01W-11.5NPT	11.5	3.97	9.525	4.4	○	○
	RT16.01W-14NPT	LT16.01W-14NPT	14	3.97	9.525	4.4	○	○
	RT16.01W-18NPT	LT16.01W-18NPT	18	3.97	9.525	4.4	○	○
	RT16.01W-27NPT	LT16.01W-27NPT	27	3.97	9.525	4.4	○	○


★ Recommended grade (always stock available) ● Available grade (always stock available) ○ Make-to-order

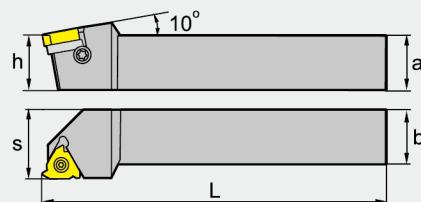
	Type		Basic dimensions(mm)				Recommended coating grade	
	The right hand tools	The left hand tools	Pitch/mm (pitch/Inch)	S	ØI.C	Ød	YBG201	
							R	L
Internal thread	RT16.01N-8NPT	LT16.01N-8NPT	8	3.97	9.525	4.4	○	○
	RT16.01N-11.5NPT	LT16.01N-11.5NPT	10	3.97	9.525	4.4	○	○
	RT16.01N-14NPT	LT16.01N-14NPT	12	3.97	9.525	4.4	○	○
	RT16.01N-18NPT	LT16.01N-18NPT	18	3.97	9.525	4.4	○	○
	RT16.01N-27NPT	LT16.01N-27NPT	20	3.97	9.525	4.4	○	○

★ Recommended grade (always stock available) ● Available grade (always stock available) ○ Make-to-order

Threading tools code key

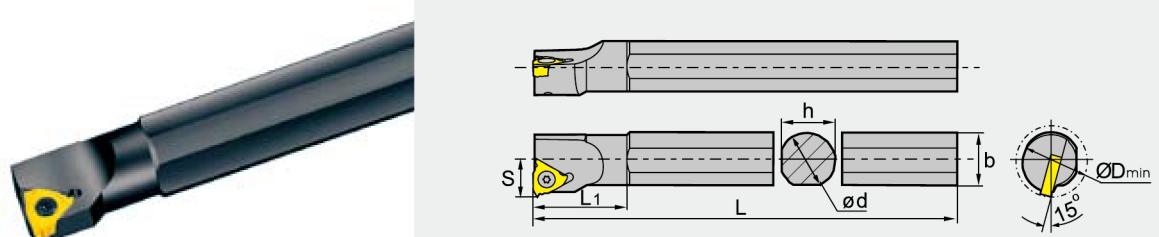

A

General
turningParting and
groovingThreading
tools


Threading tools

■ External threading tools

R-type shown



Type	Stock	Basic dimensions(mm)					Applicable inserts	Inserts screw	Shim	Shim screw	Wrench	
		a	h	b	L	s						
SWR	1616H16	▲	16	16	16	100	20	RT16.01W-□□□□	I60M3.5×12	MT16-□□M	SM4×8C	WT15IP
	2020K16	▲	20	20	20	125	25					
	2525M16	▲	25	25	25	150	32					
	3225P16	▲	32	32	25	170	32					
	3232P16	▲	32	32	32	170	40					
	2525M22	▲	25	25	25	150	32					
	3225P22	▲	32	32	25	170	32					
	3232P22	▲	32	32	32	170	40					WT15IP WT20IP
SWL	4040S22	△	40	40	40	250	50					
	1616H16	▲	16	16	16	100	20	LT16.01W-□□□□	I60M3.5×12	MT16-□□M	SM4×8C	WT15IP
	2020K16	▲	20	20	20	125	25					
	2525M16	▲	25	25	25	150	32					
	3225P16	▲	32	32	25	170	32					
	3232P16	▲	32	32	32	170	40					
	2525M22	▲	25	25	25	150	32					
	3225P22	▲	32	32	25	170	32					WT15IP WT20IP
	3232P22	▲	32	32	32	170	40					
	4040S22	△	40	40	40	250	50					

▲Stock available

△Make-to-order

■ Internal threading tools

R-type shown

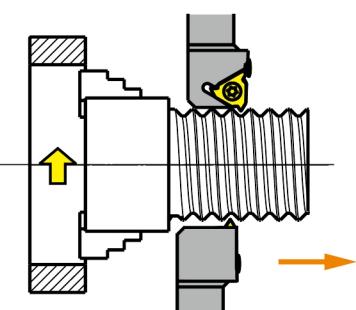
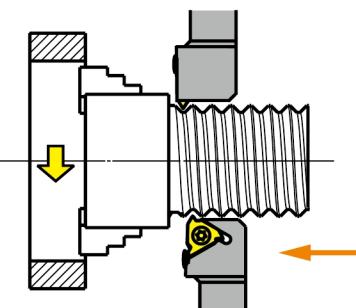
Type	Stock	Basic dimensions(mm)							Applicable inserts	Inserts screw	Shim	Shim screw	Wrench	
		d	L	b	D _{min}	s	h	L ₁						
SNR	0016K11	▲	16	125	16	12	10	15	20.9	RT11.01N-□□□□	I60 M2.5×6.5	---	---	WT07IP
	0016M11	▲	16	150	15.5	16	10.5	15	25.9		I60 M3.5×8	---	---	WT15IP
	0016M16	▲	16	150	15.5	20	12	15	27		I60 M3.5×12	MT16-□□M	SM4×8C	WT15IP
	0020M16	▲	20	150	19	25	14	18	28.7		I60 M5×10	---	---	WT20IP
	0020Q16	▲	20	180	19	25	14	18	34		I60 M5×17	MT22-□□M	SM4×8C	WT15IP
	0025M16	▲	25	150	24	32	17	23	28.8		I60 M5×10	---	---	WT20IP
	0032R16	▲	32	200	31	40	22	30	30.9		I60 M5×17	MT22-□□M	SM4×8C	WT20IP
	0032S16	▲	32	250	31	40	22	30	30.9		I60 M5×10	---	---	WT07IP
	0040T16	▲	40	300	38.5	50	27	37	31.5		I60 M5×17	MT22-□□M	SM4×8C	WT15IP
	0050U16	▲	50	350	49.5	63	35	49	40.2		I60 M5×10	---	---	WT20IP
	0020Q22	▲	20	180	21.5	25	15	18	35		I60 M5×17	MT22-□□M	SM4×8C	WT15IP
	0025R22	▲	25	200	24	32	19	23	39		I60 M5×10	---	---	WT20IP
SNL	0016K11	▲	16	125	16	12	10	15	20.9	LT11.01N-□□□□	I60 M2.5×6.5	---	---	WT07IP
	0016M11	▲	16	150	15.5	16	10.5	15	25.9		I60 M3.5×8	---	---	WT15IP
	0016M16	▲	16	150	15.5	20	12	15	27		I60 M3.5×12	MT16-□□M	SM4×8C	WT15IP
	0020M16	▲	20	150	19	25	14	18	28.7		I60 M5×10	---	---	WT20IP
	0020Q16	▲	20	180	19	25	14	18	34		I60 M5×17	MT22-□□M	SM4×8C	WT15IP
	0025M16	▲	25	150	24	32	17	23	28.8		I60 M5×10	---	---	WT20IP
	0032R16	▲	32	200	31	40	22	30	30.9		I60 M5×17	MT22-□□M	SM4×8C	WT15IP
	0032S16	▲	32	250	31	40	22	30	30.9		I60 M5×10	---	---	WT07IP
	0040T16	▲	40	300	38.5	50	27	37	31.5		I60 M5×17	MT22-□□M	SM4×8C	WT15IP
	0050U16	▲	50	350	49.5	63	35	49	40.2		I60 M5×10	---	---	WT20IP
	0020Q22	▲	20	180	21.5	25	15	18	35		I60 M5×17	MT22-□□M	SM4×8C	WT15IP
	0025R22	▲	25	200	24	32	19	23	39		I60 M5×10	---	---	WT20IP
A	0032S22	▲	32	250	31	40	22	30	36.4	LT22.01N-□□□□	I60 M5×17	MT22-□□M	SM4×8C	WT15IP
	0040T22	▲	40	300	38.5	50	27	37	37.2		I60 M5×17	MT22-□□M	SM4×8C	WT20IP
	0050U22	▲	50	350	48.5	63	35	47	42.6		I60 M5×10	---	---	WT07IP
	0020Q22	▲	20	180	21.5	25	15	18	35		I60 M5×17	MT22-□□M	SM4×8C	WT15IP
	0025R22	▲	25	200	24	32	19	23	39		I60 M5×10	---	---	WT20IP

▲Stock available

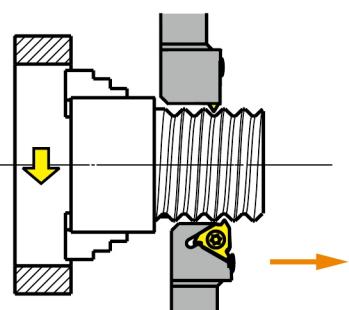
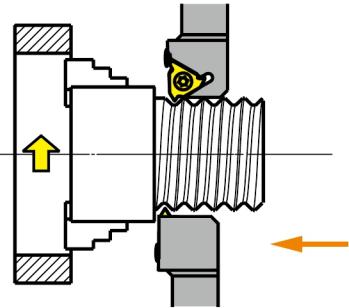
△Make-to-order

General turning

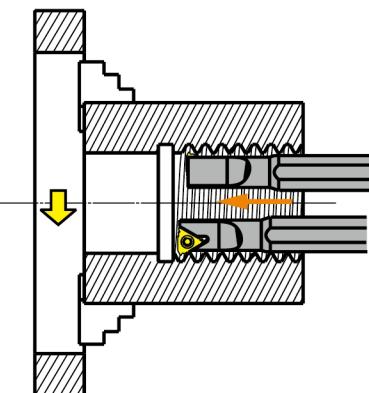
Parting and grooving

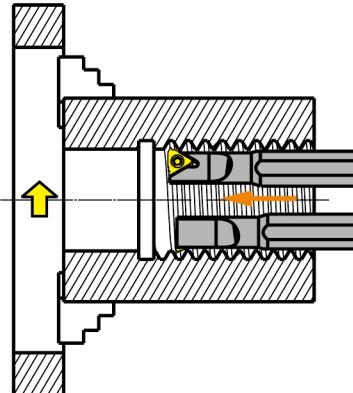


Threading tools

Please follow the following steps to get the best threading result:



- 1 Select proper thread machining method.
- 2 Define helical angle and select shim
- 3 Select proper insert and tool holder size
- 4 By checking reference table of standard threading programs, select feasible cutting parameters.
- 5 Select feed way.

Machining method of threading tools


External threading machining (Right thread)


External threading machining (Left thread)

Internal threading machining (Right thread)

Internal threading machining (Left thread)

Decide helical angle and select shim

The clearance angle of threading inserts is actually along the edge (flank). This has significant effect on heat diffusion, spread of abrasion as well as tool life, security and pitch quality. The clearance angle of threading pitch on clearance face is determined by thread helical angle. These two angles are similar to each other to some extent. If inclined angle of insert is different from the helical angle, then the clearance angle won't be the same either.

The helical angle of pitch has to be the same with the inclined angle of insert to prevent over wearing on the clearance face which could affect tool life. the helical angle is calculated as below:

$$\rho = \arctan \frac{p}{d_2 \times \pi}$$

P = Pitch

d_2 = pitch diameter

The most common inclined angle is 1° . MT standard shim and its inclined angle is also 1° .

Calculation of clearance angle:

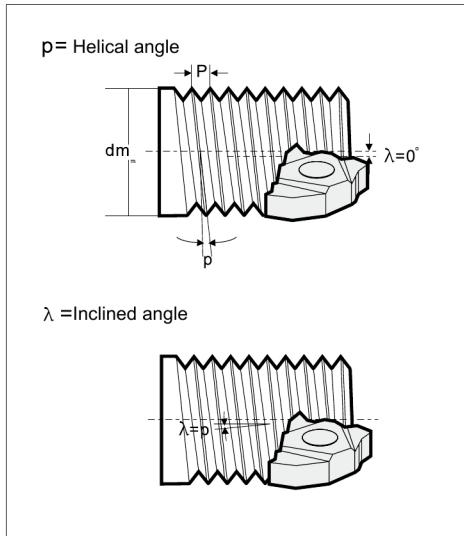
Clearance angle is calculated as below:

$$\beta = \text{arc}(\tan \theta \times \tan \alpha)$$

θ = Thread profile angle

α = The rake angle of external standard threading tools is 10° ; the rake angle of internal standard threading tools is 15°

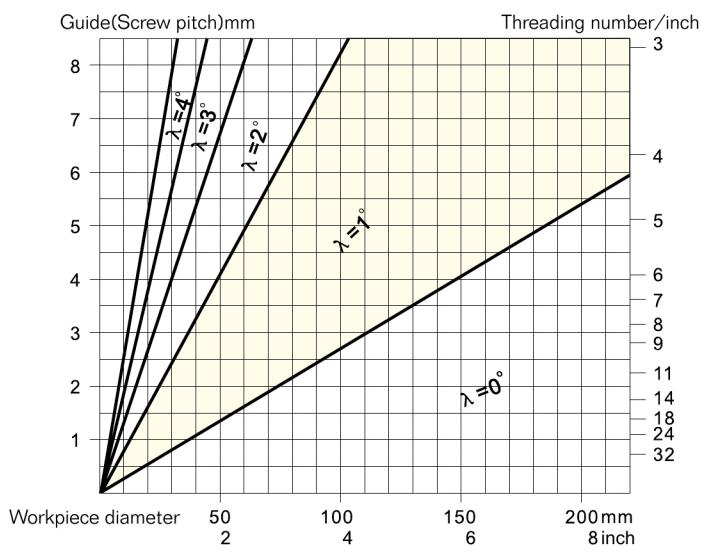
The shim has to be changed when helical angle of thread is \leq clearance angle of tool, which could cause intervene on insert flank.


Please change the shim to adjust the difference between helical angle of thread and inclined angle of shim to be within $2^\circ \sim 0^\circ$.

For example: when $P=1.5$, $d_2=24\text{mm}$,
helical angle 1.14° -($2^\circ \sim 0^\circ$)=inclined angle
($-0.86^\circ \sim 1.14^\circ$)
it is feasible to use standard shim 1°

Shim specification table is as follows:

Screw pitch range	Insert dimensions	Inclined angle	Shim
0.5-3.0	16	0	MT16-00M
		1	MT16-01M
		2	MT16-02M
		3	MT16-03M
3.5-6.0	22	0	MT22-00M
		1	MT22-01M
		2	MT22-02M
		3	MT22-03M


Note: the standard angle of shim for our threading tools is 1° . ((MT16-01M or MT22-01M)

Please refer to the table below for actual value:

Thread profile angle 2θ	β	
	External thread	Internal thread
60°	8.5°	6°
55°	7°	7°
30°	4°	2.5°
29°	4°	2.5°

Select shim:

Select proper inserts and size of tool holder (Please refer to detailed table of threading tools and inserts)

Parameter table for threading program under different standards

Table of recommended in-feed for metric ISO external threading with wiper edge

Screw pitch	1.0	1.25	1.5	1.75	2.0	2.5	3.0	4.0	5.0
Total in-feed	0.72	0.86	1.02	1.17	1.33	1.63	1.94	2.58	3.21
Number of passes	5	6	7	8	9	11	13	15	17
Order to follow in threading operation	Value of radial in-feed (X) and flank in-feed (Z)								
	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z
1	0.20/-	0.20/-	0.21/-	0.22/-	0.24/-	0.25/-	0.26/-	0.35/-	0.40/-
2	0.18/0.10	0.18/0.10	0.18/0.10	0.20/0.12	0.22/0.13	0.24/0.14	0.24/0.14	0.30/0.17	0.35/0.20
3	0.16/0.09	0.14/0.09	0.18/0.10	0.18/0.10	0.20/0.12	0.21/0.12	0.20/0.12	0.25/0.14	0.30/0.17
4	0.10/0.06	0.10/0.08	0.15/0.09	0.15/0.09	0.15/0.09	0.18/0.10	0.20/0.12	0.20/0.12	0.28/0.16
5	0.08/-	0.08/0.06	0.12/0.07	0.13/0.08	0.12/0.07	0.15/0.09	0.18/0.10	0.18/0.10	0.25/0.14
6			0.10/0.06	0.11/0.06	0.12/0.07	0.12/0.07	0.15/0.09	0.18/0.10	0.20/0.12
7			0.08/-	0.10/0.06	0.10/0.06	0.12/0.07	0.13/0.08	0.16/0.09	0.18/0.10
8				0.08/-	0.10/0.06	0.10/0.06	0.12/0.07	0.15/0.09	0.16/0.09
9					0.08/-	0.10/0.06	0.10/0.06	0.15/0.09	0.15/0.09
10						0.08/0.05	0.10/0.06	0.13/0.08	0.15/0.09
11						0.08/-	0.08/0.06	0.12/0.07	0.13/0.08
12							0.08/0.05	0.12/0.07	0.13/0.08
13								0.11/0.06	0.12/0.07
14								0.10/0.06	0.12/0.07
15								0.08/-	0.11/0.06
16									0.10/0.06
17									0.08/-

Table of recommended in-feed for metric ISO internal threading with wiper edge

Screw pitch	1.00	1.25	1.5	1.75	2.0	2.5	3.0	4.0	5.0			
Total in-feed	0.62	0.77	0.92	1.06	1.21	0.15	1.79	2.36	2.95			
Number of passes	5	6	7	8	9	11	13	15	17			
Order to follow in threading operation	Value of radial in-feed (X) and flank in-feed (Z)											
	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z	X/Z			
1	0.18/-	0.20/-	0.22/-	0.23/-	0.24/-	0.25/-	0.26/-	0.30/-	0.32/-			
2	0.14/0.08	0.15/0.09	0.16/0.09	0.16/0.09	0.18/0.10	0.20/0.12	0.20/0.12	0.25/0.14	0.28/0.16			
3	0.12/0.07	0.12/0.07	0.14/0.08	0.14/0.08	0.15/0.09	0.15/0.09	0.20/0.12	0.22/0.13	0.25/0.14			
4	0.10/0.06	0.12/0.07	0.12/0.07	0.13/0.08	0.14/0.08	0.15/0.09	0.18/0.10	0.20/0.12	0.22/0.13			
5	0.08/-	0.10/0.06	0.11/0.06	0.12/0.07	0.12/0.07	0.13/0.08	0.15/0.09	0.18/0.10	0.21/0.12			
6			0.09/0.05	0.10/0.06	0.11/0.06	0.12/0.07	0.12/0.07	0.15/0.09	0.20/0.12			
7				0.08/-	0.10/0.06	0.10/0.06	0.12/0.07	0.12/0.07	0.15/0.09	0.18/0.10		
8					0.08/-	0.09/0.05	0.10/0.06	0.10/0.06	0.15/0.09	0.18/0.10		
9						0.08/-	0.10/0.06	0.10/0.06	0.12/0.07	0.15/0.09		
10							0.09/0.05	0.10/0.06	0.12/0.07	0.15/0.09		
11								0.10/0.06	0.12/0.07	0.15/0.09		
12									0.11/0.06	0.15/0.09		
13										0.11/0.06	0.12/0.07	
14										0.10/0.06	0.11/0.06	
15											0.08/-	0.10/0.06
16												0.10/0.06
17												0.08/-

Table of recommended in-feed for American unified standard external threading with wiper edge

Screw pitch	24	20	18	16	14	12	11	10	9	8	7	6	5	
Total in-feed	0.649	0.779	0.866	0.974	1.113	1.299	1.416	1.558	1.731	1.948	2.226	2.597	3.116	
Number of passes	5	6	6	7	9	9	10	11	12	13	14	15	16	
Order to follow in threading operation	Value of radial in-feed (X) and flank in-feed (Z)													
1	0.206 —	0.210 —	0.233 —	0.226 —	0.196 —	0.229 —	0.220 —	0.214 —	0.210 —	0.211 —	0.213 —	0.218 —	0.229 —	
2	0.148 0.086	0.163 0.094	0.181 0.104	0.188 0.109	0.189 0.110	0.222 0.128	0.228 0.132	0.240 0.139	0.256 0.148	0.276 0.160	0.304 0.176	0.343 0.198	0.399 0.230	
3	0.114 0.066	0.125 0.072	0.139 0.080	0.145 0.083	0.146 0.084	0.170 0.098	0.176 0.102	0.184 0.106	0.196 0.113	0.212 0.122	0.234 0.135	0.263 0.152	0.306 0.177	
4	0.096 0.055	0.105 0.061	0.117 0.068	0.122 0.070	0.123 0.071	0.143 0.083	0.148 0.086	0.155 0.090	0.165 0.095	0.179 0.103	0.197 0.114	0.222 0.128	0.258 0.149	
5	0.085 0.049	0.093 0.054	0.103 0.059	0.107 0.062	0.108 0.062	0.126 0.073	0.131 0.075	0.137 0.079	0.146 0.084	0.158 0.091	0.173 0.100	0.195 0.113	0.227 0.131	
6		0.084 0.048	0.093 0.054	0.097 0.056	0.098 0.056	0.114 0.066	0.118 0.068	0.124 0.072	0.132 0.076	0.142 0.082	0.157 0.091	0.177 0.102	0.205 0.119	
7				0.089 0.052	0.090 0.052	0.105 0.061	0.109 0.063	0.114 0.066	0.121 0.070	0.131 0.076	0.144 0.083	0.163 0.094	0.189 0.109	
8					0.084 0.048	0.098 0.056	0.101 0.058	0.106 0.061	0.113 0.065	0.122 0.070	0.134 0.078	0.151 0.087	0.176 0.101	
9					0.079 0.045	0.092 0.053	0.095 0.055	0.100 0.057	0.106 0.061	0.114 0.066	0.126 0.073	0.142 0.082	0.165 0.095	
10						0.090 0.052	0.094 0.054	0.100 0.058	0.108 0.063	0.119 0.069	0.134 0.078	0.156 0.090		
11							0.090 0.052	0.095 0.055	0.103 0.059	0.113 0.065	0.128 0.074	0.149 0.086		
12								0.091 0.053	0.098 0.057	0.108 0.063	0.122 0.071	0.142 0.082		
13									0.094 0.054	0.104 0.060	0.117 0.068	0.136 0.079		
14										0.100 0.058	0.113 0.065	0.131 0.076		
15											0.109 0.063	0.126 0.073		
16												0.122 0.071		

Table of recommended in-feed for American unified standard internal threading with wiper edge

Screw pitch	24	20	18	16	14	12	11	10	9	8	7	6	5
Total in-feed	0.573	0.687	0.764	0.860	0.982	1.146	1.250	1.375	1.528	1.719	1.964	2.291	2.750
Number of passes	5	6	6	7	8	9	9	10	11	12	13	14	15
Order to follow in threading operation	Value of radial in-feed (X) and flank in-feed (Z)												
1	0.193 —	0.200 —	0.222 —	0.219 —	0.220 —	0.228 —	0.250 —	0.247 —	0.246 —	0.252 —	0.262 —	0.278 —	0.302 —
2	0.127 0.073	0.239 0.081	0.155 0.089	0.161 0.093	0.173 0.100	0.190 0.110	0.207 0.120	0.216 0.125	0.229 0.132	0.247 0.142	0.271 0.156	0.304 0.176	0.353 0.204
3	0.098 0.056	0.107 0.062	0.119 0.069	0.124 0.072	0.132 0.076	0.146 0.084	0.159 0.092	0.166 0.096	0.176 0.101	0.189 0.109	0.208 0.120	0.234 0.135	0.271 0.156
4	0.082 0.048	0.090 0.052	0.100 0.058	0.104 0.060	0.112 0.064	0.123 0.071	0.134 0.077	0.140 0.081	0.148 0.086	0.160 0.092	0.175 0.101	0.197 0.114	0.228 0.132
5	0.073 0.042	0.079 0.046	0.088 0.051	0.092 0.053	0.098 0.057	0.108 0.062	0.118 0.068	0.123 0.071	0.130 0.075	0.141 0.081	0.1543 0.089	0.173 0.100	0.201 0.116
6		0.072 0.041	0.080 0.046	0.083 0.048	0.089 0.051	0.098 0.056	0.107 0.062	0.111 0.064	0.118 0.068	0.127 0.073	0.140 0.081	0.157 0.091	0.182 0.105
7				0.077 0.044	0.082 0.047	0.090 0.052	0.098 0.057	0.102 0.059	0.108 0.063	0.117 0.067	0.128 0.074	0.144 0.083	0.167 0.097
8					0.076 0.044	0.084 0.048	0.091 0.053	0.095 0.055	0.101 0.058	0.109 0.063	0.119 0.069	0.134 0.078	0.156 0.090
9						0.079 0.045	0.086 0.050	0.090 0.052	0.095 0.055	0.102 0.059	0.112 0.065	0.126 0.073	0.146 0.084
10								0.085 0.049	0.090 0.052	0.097 0.056	0.106 0.061	0.119 0.069	0.138 0.080
11									0.085 0.049	0.092 0.053	0.101 0.058	0.113 0.065	0.131 0.076
12										0.088 0.051	0.096 0.056	0.108 0.063	0.126 0.073
13											0.092 0.053	0.101 0.060	0.121 0.070
14												0.100 0.058	0.116 0.067
15													0.112 0.065

Table of recommended in-feed for British standard internal and external threading with wiper edge

Screw pitch	28	20	19	16	14	12	11	10	9	8	7	6	5
Total in-feed	0.581	0.813	0.856	1.017	1.162	1.355	1.479	1.626	1.807	2.033	2.324	2.711	3.253
Number of passes	5	6	6	8	8	9	9	10	11	12	14	15	16
Order to follow in threading operation	Value of radial in-feed (X) and flank in-feed (Z)												
1	0.179 —	0.211 —	0.223 —	0.196 —	0.223 —	0.226 —	0.246 —	0.236 —	0.230 —	0.255 —	0.195 —	0.197 —	0.204 —
2	0.134 0.070	0.172 0.089	0.181 0.094	0.186 0.097	0.213 0.111	0.234 0.122	0.255 0.133	0.226 0.139	0.282 0.147	0.304 0.158	0.322 0.167	0.361 0.189	0.421 0.219
3	0.104 0.054	0.132 0.069	0.139 0.072	0.143 0.074	0.163 0.085	0.180 0.093	0.197 0.102	0.206 0.106	0.216 0.113	0.233 0.121	0.247 0.128	0.278 0.145	0.323 0.168
4	0.087 0.045	0.111 0.058	0.117 0.061	0.120 0.063	0.138 0.072	0.151 0.079	0.165 0.086	0.172 0.090	0.182 0.095	0.197 0.102	0.208 0.108	0.234 0.122	0.272 0.142
5	0.077 0.040	0.098 0.051	0.103 0.054	0.106 0.055	0.121 0.063	0.133 0.069	0.145 0.076	0.152 0.079	0.161 0.084	0.1738 0.090	0.183 0.095	0.207 0.108	0.240 0.125
6		0.089 0.046	0.093 0.049	0.096 0.050	0.110 0.057	0.121 0.063	0.131 0.068	0.137 0.071	0.145 0.076	0.157 0.082	0.166 0.086	0.187 0.097	0.217 0.113
7				0.088 0.046	0.101 0.052	0.111 0.058	0.121 0.063	0.126 0.066	0.134 0.070	0.144 0.075	0.152 0.079	0.172 0.089	0.200 0.104
8				0.082 0.043	0.093 0.049	0.103 0.054	0.113 0.059	0.117 0.061	0.124 0.065	0.134 0.070	0.142 0.074	0.160 0.083	0.186 0.097
9					0.097 0.050	0.106 0.055	0.106 0.057	0.110 0.057	0.117 0.061	0.126 0.066	0.133 0.069	0.150 0.078	0.174 0.091
10								0.104 0.054	0.111 0.058	0.119 0.062	0.126 0.066	0.142 0.074	0.165 0.086
11									0.105 0.055	0.113 0.059	0.120 0.062	0.135 0.070	0.157 0.082
12										0.108 0.056	0.114 0.060	0.129 0.067	0.150 0.078
13											0.110 0.055	0.124 0.064	0.144 0.075
14												0.119 0.062	0.138 0.072
15												0.115 0.060	0.133 0.069
16													0.129 0.067

Table of recommended in-feed for NPT internal and external threading with wiper edge

Screw pitch	27	18	14	11.5	8
Total in-feed	0.75	1.129	1.451	1.767	2.54
Number of passes	6	8	10	12	14
Order to follow in threading operation	Value of radial in-feed (X) and flank in-feed (Z)				
	X/Z	X/Z	X/Z	X/Z	X/Z
1	0.19/-	0.22/-	0.240/-	0.24/-	0.255/-
2	0.15/0.087	0.181/0.104	0.200/0.115	0.208/0.120	0.250/0.144
3	0.13/0.075	0.152/0.088	0.170/0.098	0.182/0.105	0.245/0.141
4	0.11/0.063	0.141/0.081	0.150/0.086	0.168/0.097	0.230/0.133
5	0.09/0.052	0.131/0.075	0.140/0.081	0.155/0.089	0.210/0.121
6	0.08/0.46	0.121/0.070	0.130/0.075	0.145/0.084	0.195/0.112
7		0.101/0.058	0.120/0.069	0.138/0.079	0.180/0.104
8		0.082/0.047	0.110/0.063	0.124/0.072	0.175/0.101
9			0.100/0.058	0.117/0.067	0.170/0.098
10			0.091/0.052	0.105/0.060	0.155/0.089
11				0.095/0.055	0.140/0.080
12				0.090/0.052	0.125/0.072
13					0.110/0.063
14					0.100/0.058

Table of recommended in-feed for BSPT internal and external threading with wiper edge

Screw pitch	28	19	14	11	
Total in-feed	0.581	0.856	1.162	1.479	
Number of passes	5	6	8	10	
Order to follow in threading operation	Value of radial in-feed (X) and flank in-feed (Z)				
	X/Z	X/Z	X/Z	X/Z	
1	0.179/-	0.223/-	0.222/-	0.214/-	
2	0.134/0.070	0.181/0.094	0.213/0.111	0.242/0.126	
3	0.103/0.054	0.139/0.072	0.163/0.085	0.186/0.097	
4	0.087/0.045	0.117/0.061	0.138/0.072	0.157/0.082	
5	0.078/0.040	0.103/0.054	0.121/0.063	0.138/0.072	
6		0.093/0.049	0.110/0.057	0.125//0.065	
7			0.101/0.052	0.115/0.060	
8			0.094/0.049	0.107/0.056	
9				0.100/0.052	
10				0.095//0.049	

Table of recommended cutting parameters

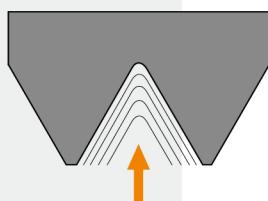
A

General turning

Parting and grooving

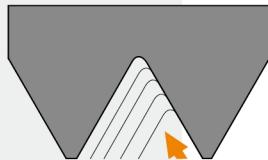
Threading

Application information of threading

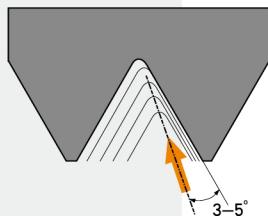

ISO	Material	Unit cutting force Kc0.4 N/mm ²	Hardness HB	Grade
				YBG201
				Cutting speed(m/min)
P	Carbon steel	C=0.15%	1900	125
		C=0.35%	2100	150
		C=0.60%	2250	200
	Alloy steel	Anneal	2100	180
		Hardened	2600	275
		Hardened	2700	300
		Hardened	2850	350
	High alloy steel	Anneal	2600	200
		Hardened	3900	325
	Cast steel	Non-alloy	2000	180
		low alloy	2500	200
		high alloy	2700	225
		Martensite steel 12%Mn	3600	250
M	Stainless steel	Austenite	2450	180
		Martensite/Ferrite	2300	200
K	Malleable cast iron	Ferrite	1100	130
		Pearlite	1100	230
	Gray cast iron	Low tensile-strength	1100	180
		High tensile-strength	1500	260
	Nodular cast iron	Ferrite	1100	160
		Pearlite	1800	250
N	Al alloy	Non-aging treatment	500	60
		Aging treatment	800	100
S	Heat resistant alloy	Non-aging treatment	750	75
		Aging treatment	900	90
H	Hardened steel	Iron base	Anneal	200
			Aging	280
		Ni- or Co-base	Anneal	3500
			Aging	4150
			Casting	4150
				320
				35-50
				25-35
				15-25
				10-20
				10-15
				40-50

Note:

- The values in the above table are range values. High values in the range could be considered in actual cutting. When trying new cutting speed, please check the cutting edge condition before operation.
- In stainless steel threading, high cutting speed should be used to prevent built-up edge.
- The cutting parameters should be reduced when cutting small pitch thread and when using tools with small nose radius.
- When cutting thread by tools with small nose radius, such as NPT standard thread, it is advisable to use tools with big nose radius first to rough, so as to improve the life of tools with small nose radius.


In-feed way of threading tools

Radial in-feed


- Easy operating, high general
- V-shape chip caused by long chip steel workpiece will produce big bend stress on cutting edge.
- It requires low cutting depth, sharp cutting edge and good tough material.
- Big quantity of heat when cutting ,V-shape chip is hard to control
- Because the interface of cutting chips on the right and left side is long, so it is easy to cause shaking and make the cutting edge suffer more overloading

Flank in-feed

- Cutting edge suffer small bend stress, stable estate, it is easy for chips formation in deep cutting depth.
- There are enough space to leave chips flow when flank in-feed
- Big abrasion on right flank

Modified flank in-feed

- Right Cutting Edge also engage on cutting depth to a certain extent, it can reduce the abrasion on right side of clearance face.
- Cutting edge suffer small bend stress, stable estate, it is easy for chips formation in deep cutting depth.
- Good Cutting Performance

Alternate flank in-feed

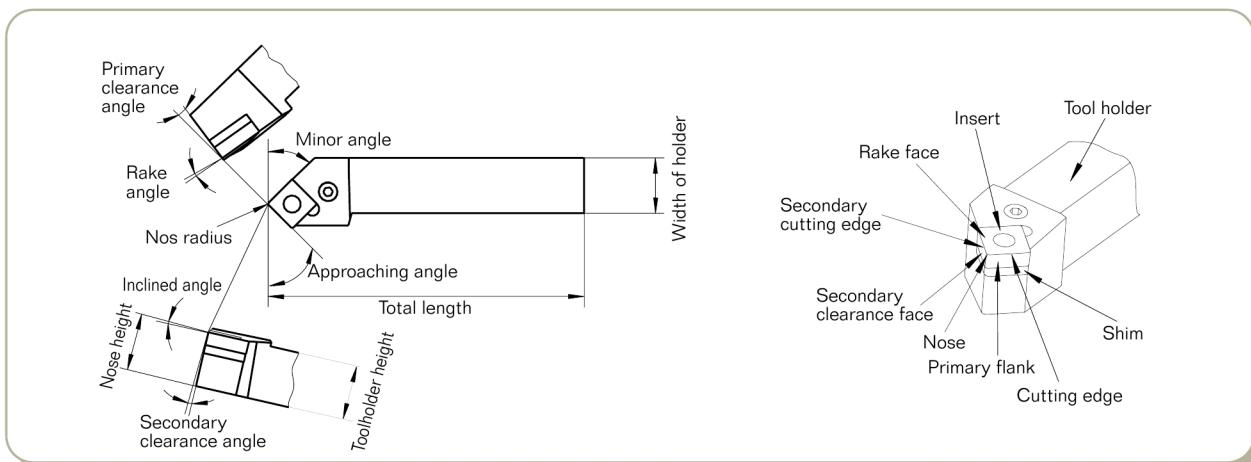
- Cutting edge trade off when machining, equality abrasion on left and right side of clearance face on cutting edge, it can improve the life of tools
- Chips are flowing from both of right and left side, good chips flowing
- Recommend using in big screw-pitch thread cutting

Recommend adopting flank in-feed or alternate flank in-feed under allowable range of machining equipment or programmer, it can eliminate the machining vibration effectively, and it has enough space discharge the chips between pitch. Cutting edge suffer a small stress, machining stable, it likes the general turning process when machining thread, good chip control without extra chips.

Common problems in threading and solutions

A

General
turningParting and
grooving


Threading

Application information of threading

Problem	Cause	Solutions
Over wear on clearance face	Cutting speed too high.	Reduce cutting speed.
	Low cutting depth, abrasion.	Reduce frequency of feed and friction of cutting edge.
	Inserts are over the center line.	Adopt correct center height.
Asymmetric wear on right and left cutting edge	The inclined angle of insert is different from the helical angle of thread.	Change to proper shim to get correct inclined angle.
	Flank in-feed is not correct.	Change the way of flank in-feed.
Breakage	Cutting speed too low.	Increase cutting speed.
	Cutting force too high.	Increase frequency of feed and reduce Max in-feed.
	Unstable clamping.	Check if workpiece vibrates. Reduce overhang of tool. Verify clamping of workpiece and tool.
	Chip twisting.	Increase the pressure of cooling liquid to blow away chips.
Plastic deformation	High cutting speed, high temperature on cutting area.	Reduce cutting speed. Increase feed frequency and reduce Max cutting depth.
	Insufficient cooling fluid.	Increase cooling fluid supply.
Low thread surface quality	Cutting speed too low. The insert is over the center line. Chips are not under control.	Increase cutting speed. Adjust centre height. Change the operation way of tools to well control chips.
Incorrect profile	Incorrect center height.	Adjust centre height
	Pitch on machine is not correct.	Adjust machine.
Shallow profile	Cutting speed set wrong.	Alter cutting depth.
Surface damage	Chips involved or contacted.	Change to flank in-feed to control chip flow direction.
Built-up edge	Temperature of cutting edge is too low. Usually occur when machining stainless steel and low carbon steel.	Increase cutting speed as well as pressure and concentration of cooling fluid. Choose inserts with good toughness.
Crack on surface	Cutting force too high	Reduce the cutting depth of each feed.
Vibration	Incorrect clamping of workpiece or tool	Verify clamping of workpiece and tool. Minimize overhang of tool.
	Incorrect cutting parameters	Increase cutting speed or reduce it substantially.
	Incorrect tool clamping	Adjust center height.

The functions of each part of turning tools

1 The names of each part of turning tools

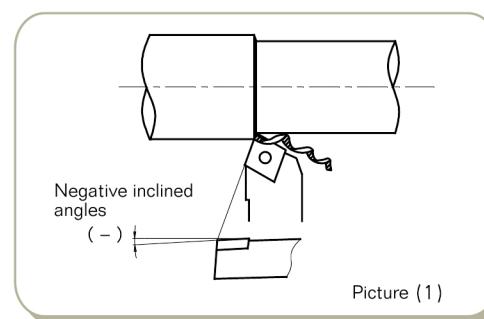
2 Effects of rake angle

Larger rake angle makes cutting edge sharper, reduces resistant forces of chip flow, diminishes friction and prevent deformation, leading to smaller cutting forces and cutting power, lower cutting temperature, less abrasion and higher surface quality. However, too large rake angle would reduce the rigidity and strength of tool. Heat can't be diffused easily. Serious breakage and abrasion on tool would occur, reducing tool life. Please choose rake angle according to machining conditions.

Value selection	Situations
Small rake angle	<ul style="list-style-type: none"> When machining brittle and hard materials When roughing and intermittent cutting
Big rake angle	<ul style="list-style-type: none"> When machining plastic or soft materials When finishing

3 Effects of clearance angle

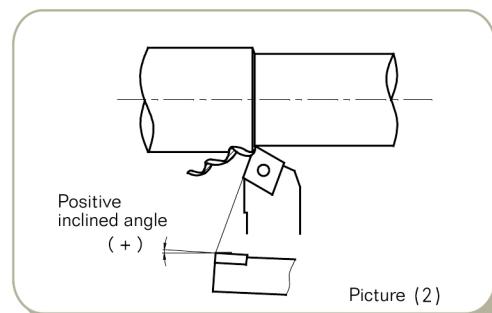
The main function of clearance angle is to reduce the friction between the clearance face of tool and the surface of workpiece. When the rake angle is fixed, larger clearance angle can increase the sharpness of cutting edge, reduce cutting forces and friction, and then achieve higher surface quality. However, if clearance angle is too large, the strength of cutting edge would decrease. Also, heat can't be diffused easily and serious abrasion would occur, reducing tool life.


The principle of choosing clearance angle: Choose small clearance angle if friction is not serious.

Value Selection	Situations
Small clearance angle	<ul style="list-style-type: none"> In order to increase nose strength when roughing When machining brittle and hard materials
Large clearance angle	<ul style="list-style-type: none"> In order to reduce friction when finishing When machining materials easy to be hardened

4 Effects of inclined angle

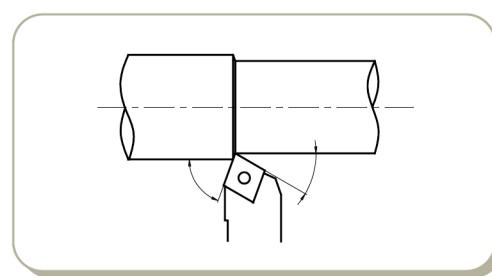
Positive or negative inclined angle determines the direction of chip flow, and also affects the strength and impact resistance of insert nose.


◆As diagram (1) shows, when the inclined angle is negative, namely nose is in the lowest point as apposed to the bottom of tool, chips flow to the machined surface of workpiece.

Picture (1)

◆ As diagram (2) shows, when inclined angle is positive, namely the nose is in the highest point as apposed to the bottom of the tool, chips flow to the areas of workpiece surface that haven't been machined.

◆ The change of inclined angle also affects insert nose strength and impact resistance. When the inclined angle is negative, the nose is in the lowest point of cutting edge. When the cutting edge enters the workpiece, the contacting point is on the cutting edge or rake face, protecting the nose from impact and increase the strength of the nose. Normally, negative inclined angle should be chosen for tools with big rake angle. This can not only increase nose strength, but also prevent the impact of entry.



Picture (2)

5 Effects of approaching angle

Reduced approaching angle increases the strength of tools and enable heat to diffuse easily, improving surface quality. This is because when the approaching angle is small, cutting edge width is large, and then the unit width of cutting edge bears less cutting force. Meanwhile, tool life can be improved.

Normally, select 90° approaching angle for turning of slender and step shaft; select 45° approaching angle for external turning, end surface machining and chamfering. When approaching angle is larger, radial force is reduced, cutting is stable, cutting thickness is increased, and chip breaking is excellent.

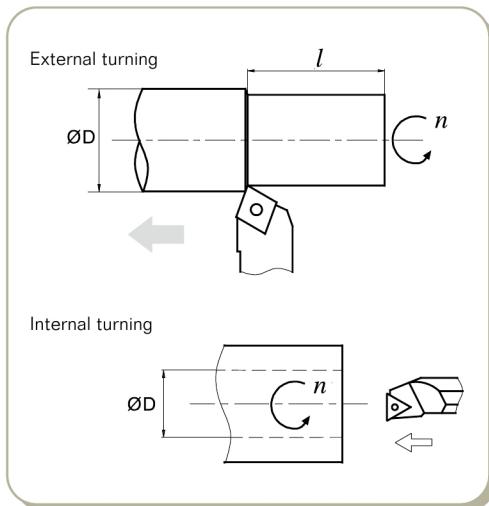
Value selection	Situations
Small approaching angle	For those materials with high intensity, high hardness and hardened layer on the surface
Big approaching angle	When rigidity of the machine is not enough

6 Effects of minor angle

Minor angle is the main angle that can affect surface quality, and it can also affect tool strength. If the approaching angle is too small, the friction between the secondary flank and machined surface of workpiece will increase, causing vibration.

The principle of selecting minor angle: Select small minor angle when roughing or when the friction is unaffected and there is no vibration. Select large minor angle when finishing.

7 Nose radius


Nose radius significantly affects nose strength and surface quality.

Large nose radius means higher cutting edge strength, and the abrasion on the rake face and clearance face can be reduced to some extent. However, if the nose radius is too large, radial force will increase, and vibration is easy to occur, affecting machining precision and surface quality.

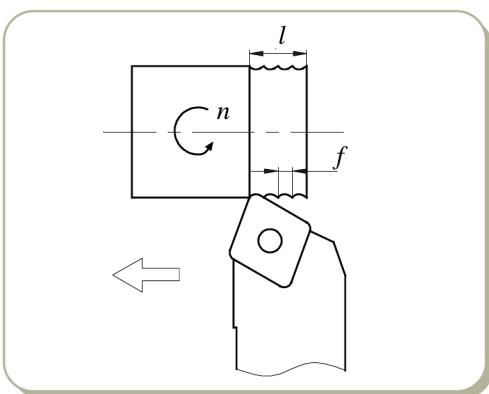
Value selection	Situations
Small nose radius	<ul style="list-style-type: none"> Finishing at small cutting depth Machining parts such as slender shaft When the rigidity of the machine is not enough
Large nose radius	<ul style="list-style-type: none"> When roughing When machining hard materials (intermittent cutting) When the rigidity of the machine is not enough

Calculation method of turning parameters

1 Calculation of cutting speed

$$V_c = \frac{\pi \times D \times n}{1000} \text{ (m/min)}$$

In the formula: V_c : Cutting speed (m/min)


n : Rotating speed of main axle (rev/min)

D : Diameter of workpiece (mm)

For example: When the rotating speed is 280rev/min and the diameter of workpiece is 150mm, the cutting speed should be:

$$V_c = \frac{\pi \times D \times n}{1000} \text{ (m/min)} = 132 \text{ (m/min)}$$

2 Calculation of feed rate

$$f = \frac{l}{n} \text{ (mm/rev)}$$

In the formula: f : Feed rate per rotation (mm/rev)

l : Cutting length per minute (mm/min)

n : Rotating speed of main axle (rev/min)

For example: When the rotating speed of main axle is 500rev/min, and the cutting length per minute is 100mm/min, the feed rate per rotation should be:

$$f = \frac{l}{n} = \frac{100}{500} = 0.2 \text{ (mm/rev)}$$

A

General
turning

Parting and
grooving

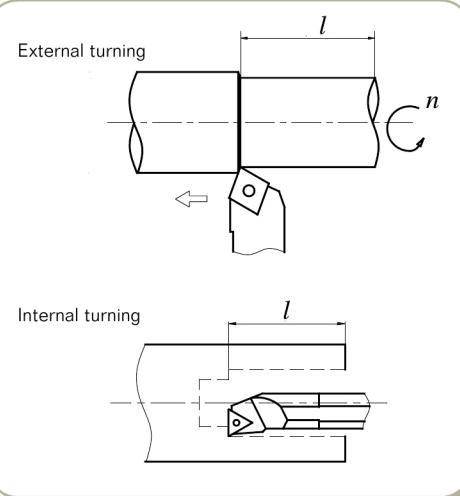
Threading

General technical information for turning

3 Cutting time calculation of external and internal turning

$$T = \frac{l}{f \times n} \text{ (min)}$$

In the formula: T: Cutting time (min)


l: Length of machined areas (mm)

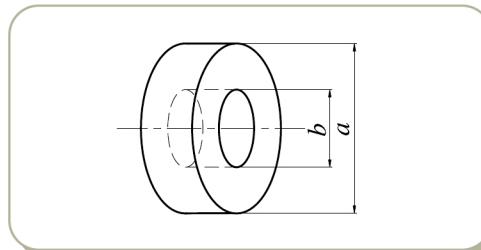
f: Feed rate (mm/rev)

n: Rotating speed of main axle (rev/min)

For example: When the rotating speed of main axle is 250rev/min, and the feed rate is 0.2mm/rev, the time needed for a cutting length of 150mm should be:

$$T = \frac{l}{f \times n} = \frac{150}{0.2 \times 250} = 3 \text{ (min)}$$

4 Time calculation for end surface turning (constant linear speed)


$$T = \frac{\pi \times (a^2 - b^2)}{4000 \times V_c \times f} \text{ (min)}$$

In the formula: T: Cutting time (min)

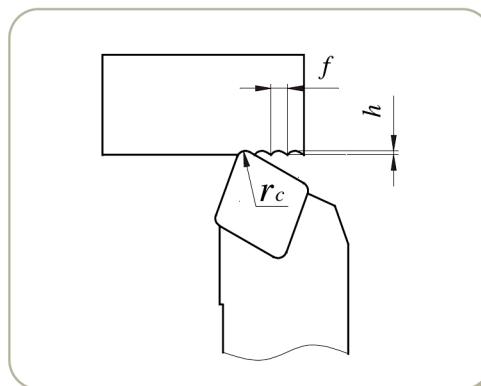
Vc: Cutting speed (m/min)

f: Feed rate (mm/rev)

For end surface without hole, b=0, the formula is still valid.

5 Theoretical value calculation of machined surface roughness

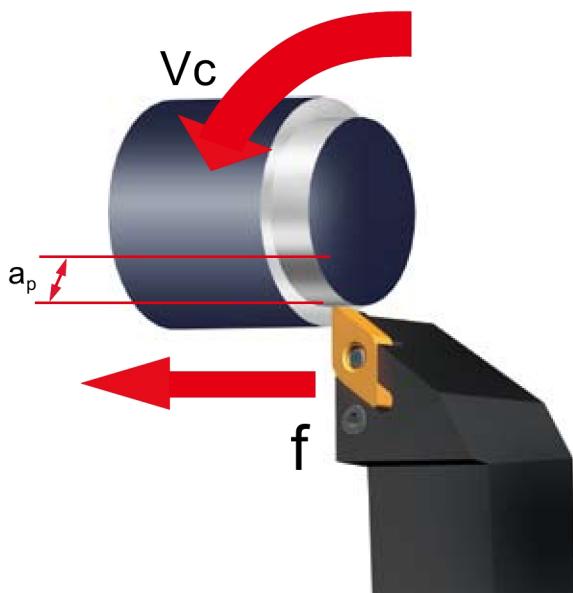
$$R = \frac{f^2}{8r_c} \times 1000 \text{ } (\mu\text{m})$$


In the formula: R: Theoretical roughness value of machined surface

f: Feed rate (mm/rev)

rc: Nose radius (mm)

For example: When the feed rate is 0.2mm/rev, and the nose radius is 0.4mm, the theoretical roughness value of machined surface should be:


$$R = \frac{f^2}{8r_c} \times 1000 = \frac{0.2^2}{8 \times 0.4} \times 1000 = 12.5 \text{ } (\mu\text{m})$$

Effect of three main turning parameters on machining

Effects of three main parameters

Normally, short machining time, long tool life and high machining precision are expected in machining, so the material quality, hardness, and shape of the workpiece, and properties of machine should be fully considered, and then we can select suitable tools and adopt high-efficiency cutting parameters, namely three parameters.

Cutting speed (V_c)

When the workpiece is rotating on the machine, the number of its rotation per minute is defined as Rotating speed of main axle (n). Because of its rotation, the cutting speed measured on the contacting point of diameter is defined as linear speed, m/min. Normally, linear speed is considered to measure the effect of cutting speed on machining.

Effect of cutting speed

Cutting speed has significant effect on tool life. When the cutting speed is increased, cutting temperature will increase and tool life will be shortened. Cutting speed varies according to the different types and hardness of workpiece. The below conclusions are reached after many cutting experiments:

(1) Normally tool life would be reduced to half when the cutting speed is increased by 20%. Tool life would be 20% of the original life if the cutting speed is raised by 50%.

(2) Low speed (20-40m/min) cutting could easily cause vibration and shorten tool life.

Feed rate (f_n)

Feed rate is defined as the moving distance of tool after workpiece rotates for one circle, measured by mm/rotation.

Effect of feed rate

Feed rate is a key factor that determines surface quality. Meanwhile it also affect the range of chip forming and the thickness of chips during machining.

In term of the effect on tool life, small feed rate leads to serious abrasion on clearance face, greatly reducing tool life.

Cutting depth (a_p)

Cutting depth is defined as the difference between machined surface and unmachined surface, measured by mm. It is half the difference value between the original diameter and machined diameter.

Effect of cutting depth

Cutting depth should be determined by the machining allowance and shape of workpiece, power and rigidity of machine, and tool rigidity.

The change of cutting depth has little effect on tool life. If the cutting depth is too low, the cutting nose only scrapes the hardened layer on the workpiece surface, reducing tool life. When there is hardened oxide layer on workpiece surface, higher cutting depth should be adopted within the possible range of machine's power to avoid cutting nose just cutting the hardened layer of workpiece.