

# GUHRING

Recondition to original quality



## Re-grinding and Re-coating Service

GUHRING – YOUR WORLD-WIDE PARTNER

# Maximize your cost savings

## Utilize Guhring's tool reconditioning services

Even the most resilient tools wear out eventually. Guhring can recondition your tools back to original manufacturing specifications, allowing you to reproduce the performance of your new tools.



**GUH**  
Recondition to



## Collection and delivery service for in time logistics

Pickup and delivery service available in select markets.

# strategically located service centers

## Nation-wide service network

In order to expedite our reconditioning process we have established 4 reconditioning centers across the U.S. Our service centers are equipped with state-of-the-art grinding and coating machines designed and manufactured by Guhring.

# RING

original quality

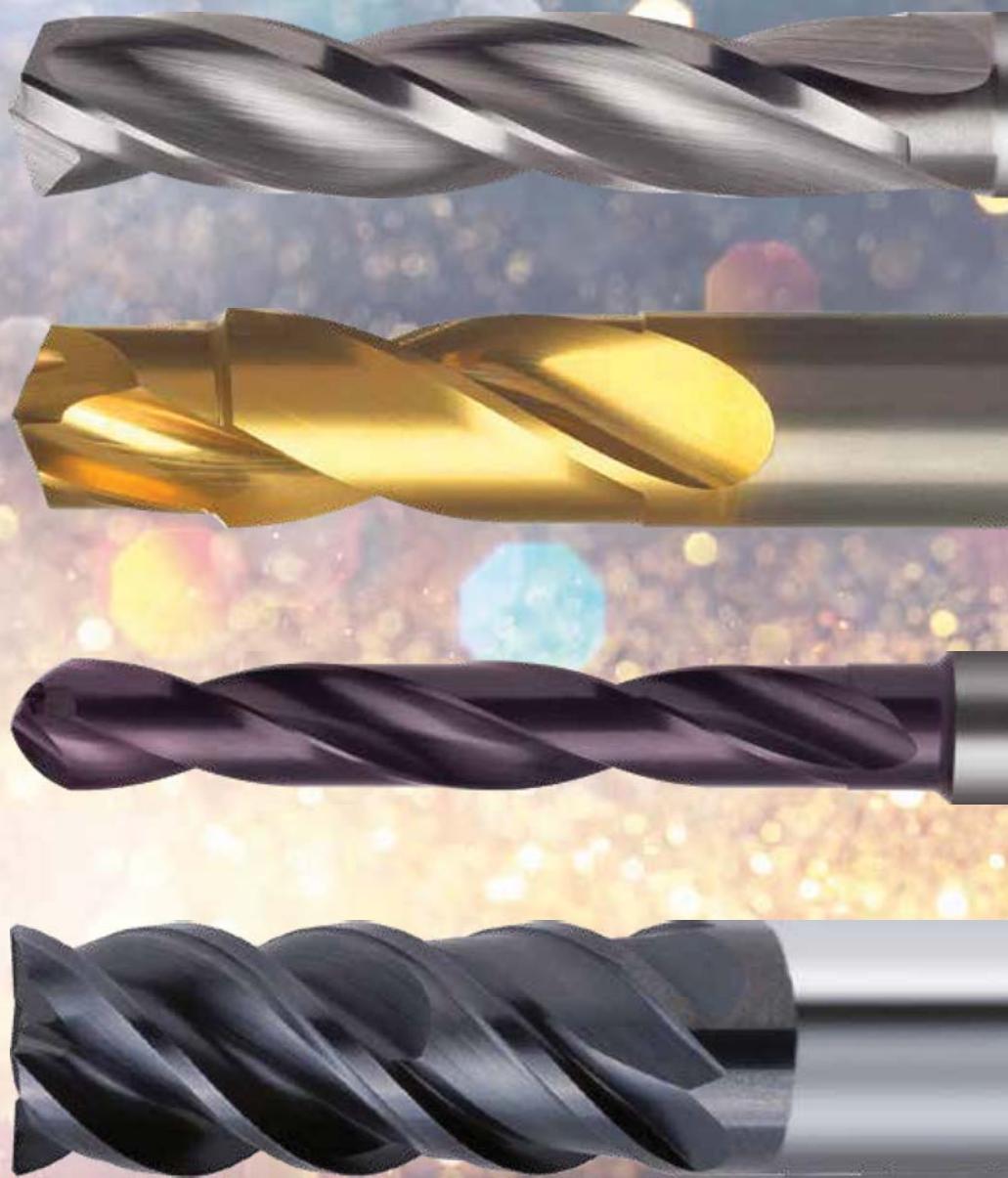
## Service with manufacturer's know-how

Thanks to our vertically integrated approach to cutting tool manufacturing, from the production of raw cutting tool materials to the in-house development and construction of grinding and coating machines, we have the necessary expertise across all aspects of new tool production as well as reconditioning.

The uniform standards in production and service we set world-wide ensure that our tools consistently perform according to the expectations of our customers.



# Quality is top priority:


As the world's leader in precision rotary cutting tool manufacturing, Guhring is uniquely qualified to provide the highest quality reconditioned tools.

- Consistent honing processes
- High quality coatings applied in-house
- Tool etching for traceability
- State-of-the-art inspection equipment



# Tool Reconditioning

Re-grinding and re-coating



# The Reconditioning Process



Worn cutting tools are reconditioned on new, state-of-the-art, 5-axis CNC grinding machines. Guhring is one of the few cutting tool manufacturers who designs and builds their own grinding equipment which allows us to build machines specifically designed around the strict requirements of our reconditioning process.

Tools are held in precision collets and fully supported with bushings throughout the grinding process to achieve near perfect run-out tolerances as well as superior surface finish. Not all reconditioning service providers can claim this level of precision and control.

Specialized tool grinding software:

- Numroto Platform
- Master database structure
- Uniform Grinding wheel system

# In-Process Inspection:

Operators use an ISO approved, first piece form to verify dimensions. Guhring also follows a “control plan” to monitor critical features based on lot quantities and work instructions.

- precise inspection guidelines
- trained inspectors
- state-of-the-art inspection equipment

Each work station is supported with in-process inspection equipment

- Climate controlled inspection departments.
- ISO certification to ensure the highest quality and repeatability.

| GUHRING<br>Process<br>Control                                                                      |                                                     | "In Process"- Inspection Plan                                                                                                                                          |                                                                            |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                                    |                                                     | Carbide Drill Blank (Blank)                                                                                                                                            |                                                                            |
|                                                                                                    |                                                     | IP # C 931                                                                                                                                                             |                                                                            |
|                                                                                                    |                                                     | for use in department<br>Point Grinding, U.S. Waters<br>& CNC Snap Grinding                                                                                            |                                                                            |
|                                                                                                    |                                                     | Spec. 1, 2, 3                                                                                                                                                          |                                                                            |
|                                                                                                    |                                                     | Instruction: This Inspection Plan applies only to components with the Drawing and Drawing. In the case of discrepancy the drawing will supersede this Inspection Plan. |                                                                            |
|                                                                                                    |                                                     | Note: All tools to be inspected for surface visual defects and completeness of previous operations.                                                                    |                                                                            |
|                                                                                                    |                                                     | ** Discontinuation of inspection tools required                                                                                                                        |                                                                            |
|                                                                                                    |                                                     | Item #      Characteristic                                                                                                                                             |                                                                            |
|                                                                                                    |                                                     | Gage                                                                                                                                                                   | Inspection Frequency                                                       |
| 1.)                                                                                                | Pull Angle                                          | PG 100/200<br>Compass                                                                                                                                                  | Machine setup (first piece)<br>Process: every 10th piece                   |
| 2.)                                                                                                | Relief Angle                                        | PG 100/200<br>Compass                                                                                                                                                  | Machine setup (first piece)<br>Process: every 5 <sup>th</sup> piece        |
| 3.)                                                                                                | Chamfer Angle                                       | PG 100/200<br>Compass                                                                                                                                                  | Machine setup (first piece)<br>Process: every 10 <sup>th</sup> piece       |
| 4.)                                                                                                | Over All Length: At<br>Plane Tangent                | Caliper, Sured Rail                                                                                                                                                    | Machine setup (first piece)<br>Process: every 5 <sup>th</sup> piece        |
| ** 5.)                                                                                             | Lip Height Variation on<br>Polar and/or Chamfer     | V-Block & Test Indi.<br>Lip Height Gauge                                                                                                                               | Machine setup (first piece)<br>Process: every 10 <sup>th</sup> piece       |
| 6.)                                                                                                | Lip Height Variation on Step<br>( When Applicable ) | PG 100/200                                                                                                                                                             | Machine setup (first piece)<br>Process: every 10 <sup>th</sup> piece       |
| 7.)                                                                                                | Chamfer Angle<br>( When Applicable )                | PG 100/200<br>Compass                                                                                                                                                  | Machine setup (first piece)<br>Process: every 10 <sup>th</sup> piece       |
| 8.)                                                                                                | Chamfer Relief Angle<br>( When Applicable )         | PG 100/200<br>Optical Comparator                                                                                                                                       | Machine setup (first piece)<br>Process: every 10 <sup>th</sup> piece       |
| 9.)                                                                                                | Chamfer Length<br>( When Applicable )               | PG 100/200<br>Compass                                                                                                                                                  | Machine setup (first piece)<br>Process: every 10 <sup>th</sup> piece       |
| 10.)                                                                                               | Step Length<br>( When Applicable )                  | PG 100/200<br>Optical Comparator                                                                                                                                       | Machine setup (first piece)<br>Process: every 10 <sup>th</sup> piece       |
| 11.)                                                                                               | Overall Height<br>( When Applicable )               | PG 100/200<br>Optical Comparator                                                                                                                                       | Machine setup (first piece)<br>Process: every 10 <sup>th</sup> piece       |
| Maintenance is applied according to the methods described in the "Guiding Inspection Guidelines".  |                                                     |                                                                                                                                                                        |                                                                            |
| Written by: QM                                                                                     |                                                     |                                                                                                                                                                        |                                                                            |
| checked: Prod. Mngt.<br>Date: 10/10/06                                                             |                                                     |                                                                                                                                                                        |                                                                            |
| Reference: QM 3300 Revision: Content #                                                             |                                                     |                                                                                                                                                                        |                                                                            |
| Note: Crossed-out text on "In Process" Inspection Plans have the crossed-out number stamped in RED |                                                     |                                                                                                                                                                        |                                                                            |
|                                                                                                    |                                                     | "In Process"- Inspection Plan                                                                                                                                          |                                                                            |
|                                                                                                    |                                                     | Carbide Drill Blank (Blank)                                                                                                                                            |                                                                            |
|                                                                                                    |                                                     | IP # C 931                                                                                                                                                             |                                                                            |
|                                                                                                    |                                                     | for use in department<br>Point Grinding, U.S. Waters<br>& CNC Snap Grinding                                                                                            |                                                                            |
|                                                                                                    |                                                     | Spec. 1, 2, 3                                                                                                                                                          |                                                                            |
|                                                                                                    |                                                     | Instruction: This Inspection Plan applies only to components with the Drawing and Drawing. In the case of discrepancy the drawing will supersede this Inspection Plan. |                                                                            |
|                                                                                                    |                                                     | Note: All tools to be inspected for surface visual defects and completeness of previous operations.                                                                    |                                                                            |
|                                                                                                    |                                                     | ** Discontinuation of inspection tools required                                                                                                                        |                                                                            |
|                                                                                                    |                                                     | Item #      Characteristic                                                                                                                                             |                                                                            |
|                                                                                                    |                                                     | Gage                                                                                                                                                                   | Inspection Frequency                                                       |
|                                                                                                    |                                                     | Indicating Micrometer<br>+ Gauge Blocks                                                                                                                                | Machine setup<br>Process: every piece<br>Documenting every 3 <sup>rd</sup> |
|                                                                                                    |                                                     | 3-Point Micrometer                                                                                                                                                     | Machine setup<br>Process: every 10th piece                                 |
|                                                                                                    |                                                     | 5-Point Micrometer<br>+ V-Block<br>+ Indicator & Stand                                                                                                                 | Machine setup<br>Process: every piece<br>Documenting every 5 <sup>th</sup> |
|                                                                                                    |                                                     | visual inspection                                                                                                                                                      |                                                                            |
|                                                                                                    |                                                     | 2 methods described in the "Guiding Inspection Guidelines".                                                                                                            |                                                                            |
|                                                                                                    |                                                     | Hausse: Reference: 1-QM 3300 Revision: Content #                                                                                                                       |                                                                            |
|                                                                                                    |                                                     | -B-                                                                                                                                                                    |                                                                            |
|                                                                                                    |                                                     | "In Process" Plans have the control number stamped in RED                                                                                                              |                                                                            |

# Routing Control:



- Same procedures & processes used to manufacture new tools are implemented in the reconditioning of used tools.
- Tools are tracked and monitored by tool number and bar coded production sheets.
- Job routings are assigned, and each operation receives its own bar coding.
- Data collection at each station during the reconditioning process.
- Customer-specific tool routings are generated when necessary.

# Laser Etching / Process Control:

All tools are laser marked with a unique production order number

- each tool is laser etched
- unique job number is affixed
- allows accurate data collection
- helps customer identify the number of regrinds per tool



All processes are tracked and recorded through our SAP® computer software. Information can be shared between all Guhring reconditioning facilities.

- concise data collection
- archived job information
- repeatability & traceability

## SOBO < 372.140.446 > RECON CARB. RT100T COOLANT =>3.5

| Routing 1001 / 37001 Frm HB 0 Input/Order-Qty 10.000 |      |      |      |      |          |                          |             |        |          |     |     |    |                          |                          |       |      |                   |
|------------------------------------------------------|------|------|------|------|----------|--------------------------|-------------|--------|----------|-----|-----|----|--------------------------|--------------------------|-------|------|-------------------|
|                                                      |      |      |      |      |          |                          |             |        |          |     |     |    |                          |                          |       |      |                   |
| Opr                                                  | A    | Plnt | Mgru | Oper | Locat    | WkCnt                    | Description | Setup  | Run Time | Qt  | TW  | Qt | TF                       | E                        | Co/Pc | Curr | Sub Instruct 1    |
| 0010                                                 | 1001 | 0190 | 0001 | 0000 | 45300190 | PREP.RESHARP             |             | 0.600  | 0.636    | Min | 1.0 | Tg | <input type="checkbox"/> | <input type="checkbox"/> | 0.00  | USD  | SEE BELOW:        |
| 0020                                                 | 1001 | 6350 | 0002 | 0000 | 45606350 | LASER ETCH               |             | 7.330  | 0.089    | Min | 0.5 | Tg | <input type="checkbox"/> | <input type="checkbox"/> | 0.00  | USD  | LASER ETCH PRODUC |
| 0030                                                 | 1001 | 4842 | 0003 | 0000 | 48104842 | PT GRD.+WEB THIN RT100   |             | 24.000 | 4.500    | Min | 5.0 | Tg | <input type="checkbox"/> | <input type="checkbox"/> | 3.36  | USD  | POINT GRIND: 0968 |
| 0040                                                 | 1001 | 4800 | 0115 | 0000 | 48104800 | SLOT GRIND               |             |        | 0.500    | Min | 3.0 | Tg | <input type="checkbox"/> | <input type="checkbox"/> | 0.00  | USD  | OPEN UP OIL HOLES |
| 0050                                                 | 1001 | 0260 | 0005 | 0000 | 45300260 | FINAL INSPECTION         |             | 4.200  | 0.096    | Min | 1.0 | Tg | <input type="checkbox"/> | <input type="checkbox"/> | 0.00  | USD  | INSPECTION BY: (  |
| 0060                                                 | 1001 | 0122 | 0001 | 0000 | 48100122 | BRUSH HONE CUTTING EDGE  |             | 3.000  | 0.384    | Min | 3.0 | Tg | <input type="checkbox"/> | <input type="checkbox"/> | 0.00  | USD  |                   |
| 0070                                                 | 1001 | 4985 | 0004 | 0000 | 42154985 | DRAG HONE RT100X         |             | 9.000  | 0.125    | Min | 3.0 | Tg | <input type="checkbox"/> | <input type="checkbox"/> | 0.47  | USD  | TO FINISH HONE SI |
| 0080                                                 | 1001 | 0260 | 0026 | 0000 | 45300260 | BRIEF INSPECTION         |             | 4.200  | 0.114    | Min | 1.0 | Tg | <input type="checkbox"/> | <input type="checkbox"/> | 0.00  | USD  |                   |
| 0090                                                 | 1001 | 7570 | 0001 | 0000 | 49107570 | A.COATING                |             |        | 0.453    | Min | 3.0 | Tg | <input type="checkbox"/> | <input type="checkbox"/> | 0.00  | USD  | ATTENTION !!! SPE |
| 0100                                                 | 1001 | 4985 | 0003 | 0000 | 49104985 | WET POLISH (GRAF)POSTCOA |             | 9.000  | 0.166    | Min | 3.0 | Tg | <input type="checkbox"/> | <input type="checkbox"/> | 0.00  | USD  |                   |
| 0110                                                 | 1001 | 0190 | 0099 | 0001 | 45300190 | OTHER OPERATIONS         |             | 0.600  | 0.636    | Min | 1.0 | Tg | <input type="checkbox"/> | <input type="checkbox"/> | 0.00  | USD  | JOIN FINISHED TO  |
| 0120                                                 | 1001 | 0190 | 0010 | 0000 | 45300190 | PACKAGE & LABEL          |             | 0.600  | 0.378    | Min | 1.0 | Tg | <input type="checkbox"/> | <input type="checkbox"/> | 0.00  | USD  |                   |
| 0130                                                 | 1001 | 6034 | 0004 | 0000 | 45300034 | OUTPUT                   |             | 0.200  | 0.091    | Min | 1.0 | Tg | <input type="checkbox"/> | <input type="checkbox"/> | 0.00  | USD  |                   |

# Tool Types Reconditioned:

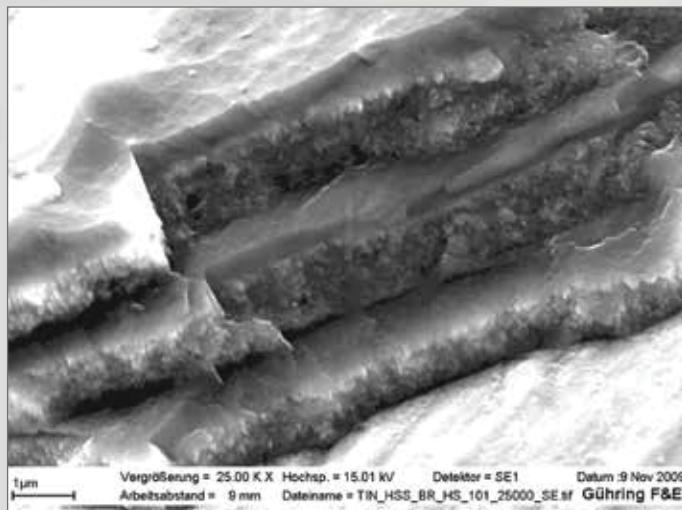
- Drills & step drills
- Reamers
- End mills
- Thread mills
- Tool modifications (chamfer, radius, neck relief, shank flats, etc.)

Care should be taken to protect your tools when shipping to Guhring for Reconditioning and Coating services. Convenient shipping totes available upon request.

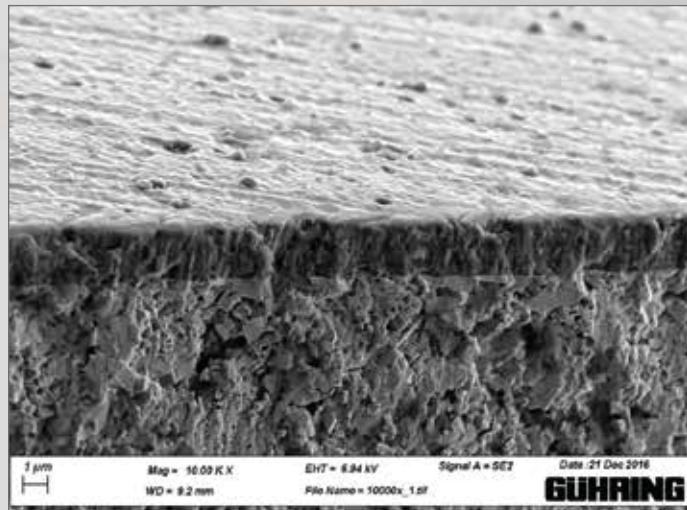


# Diamond Tool Re-Tipping

---


- PCD & CBN tipped cutting tools can be re-tipped and re-ground.
- State-of-the-art EDM and grinding machines.
- Costs a fraction of the price of a new tool.
- Refurbished tools meet original manufacturing specifications.
- It is recommended to ship tools in their original tubes and/or boxes when possible to prevent damage during the shipping process.




# PVD Coatings



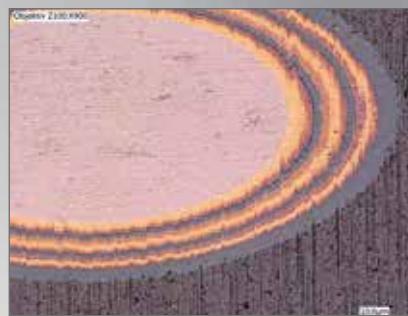
Fracture patterns are visualised via scanning electron microscopy (SEM) in order to make differences visible in the phase structure, morphology and structure dependent on process design and deposition conditions.



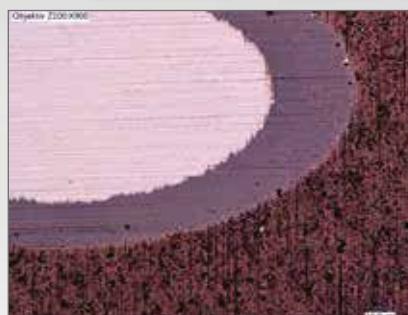
Fracture pattern, multi-layer coating, 25,000 x magnification



Fracture pattern, Arc-coating, 10,000 x magnification




A spherical calotte is ground into the surface to be inspected using a steel ball as well as an abrasive fluid.

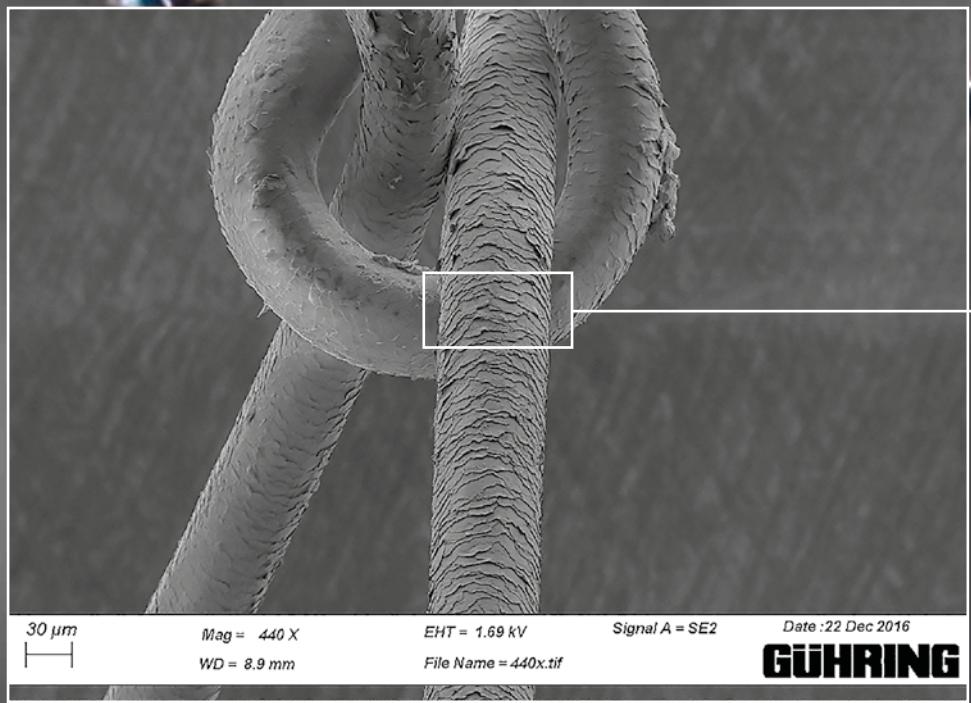

The ground form is sectioned through the coating up to the substrate lying underneath. The procedure serves to determine the wear resistance, the coating thickness, and to evaluate the coating structure, and is therefore an important element of a quality inspection.



Calotte grind in a multi-layer coating



Calotte grind in a nano-structured coating

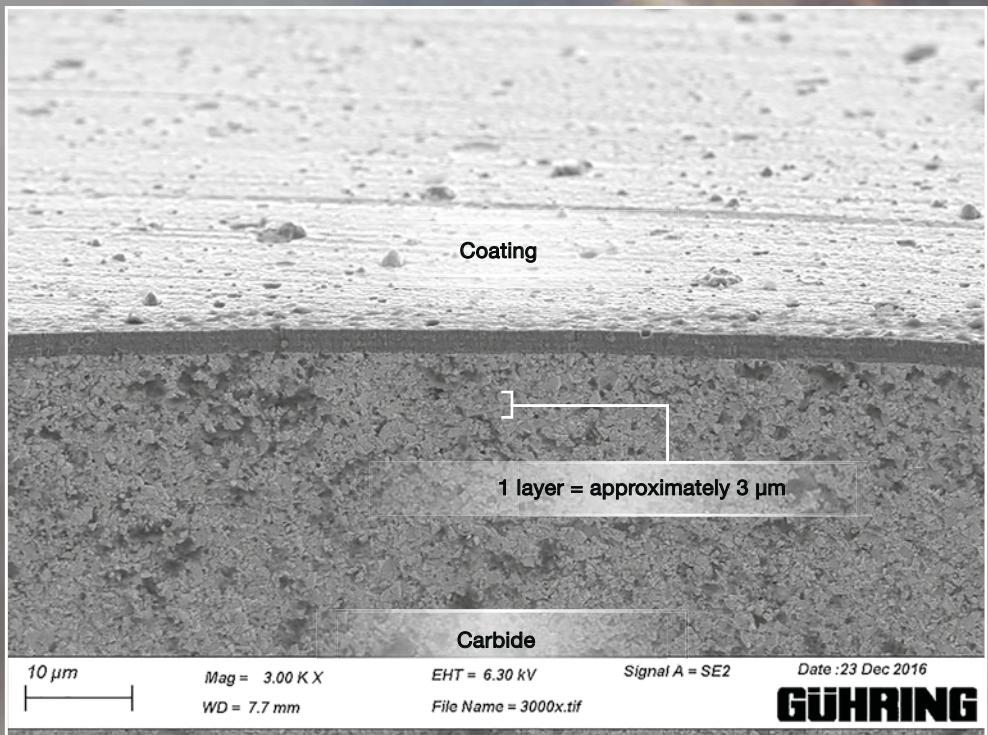



## No matter how fine: Coatings can be adapted.

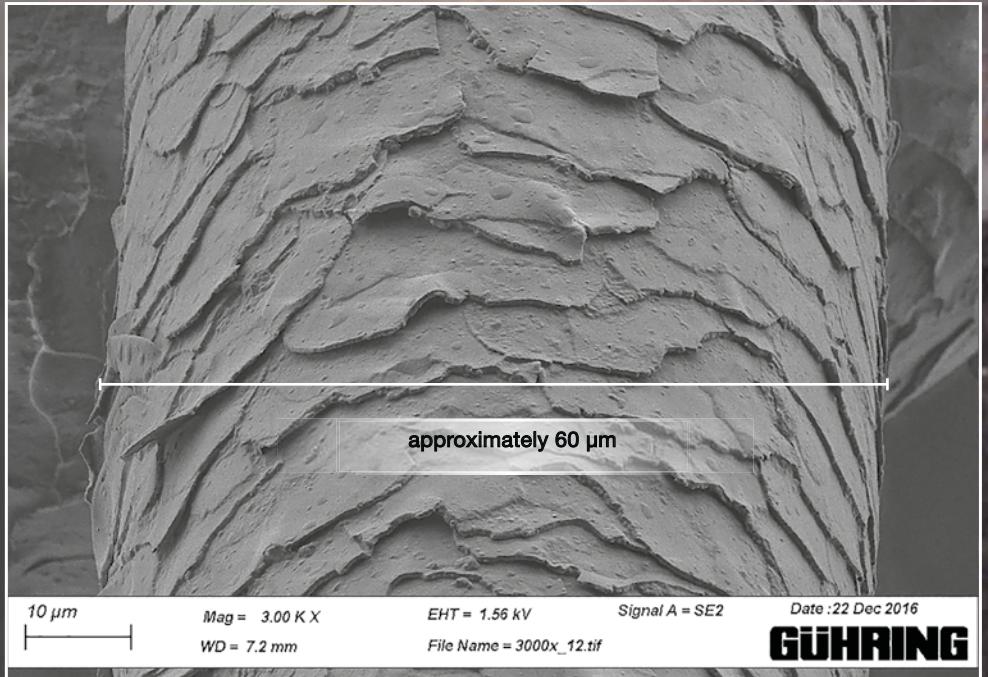
Features such as composition, micro-structure and hardness have a direct influence on wear resistance, cutting forces, surface quality and cooling lubricant consumption.

Therefore the coating is adapted to the specific application.

Regardless of the application, even an extremely thin coating layer can provide a significant benefit.




# Thin coating, enormous effect


1 hair | 20 coatings

Fracture pattern  
Arc-PVD coating  
on carbide substrate

3000x magnification,  
approximately 0.003 mm



Human hair  
3000x magnification,  
approximately 0.06 mm



# Application of Guhring coatings

|                                                         |                                                                                     | DRILLING                         |                                  |                             | MILLING                     |                             |               |
|---------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------|----------------------------------|-----------------------------|-----------------------------|-----------------------------|---------------|
|                                                         |                                                                                     | CARBIDE                          |                                  | HSS                         | CARBIDE                     |                             | HSS           |
|                                                         |                                                                                     | conv. coolant                    | MQL                              |                             | conv. coolant               | MQL                         |               |
| <b>C-steels,<br/>Free-cutting steels,<br/>Mn-steels</b> |    | Endurum<br>nano-Ra<br>nano-FIREX | Endurum<br>nano-Ra<br>nano-FIREX | nano-FIREX                  | Endurum<br>FIREX<br>nano-Ra | FIREX<br>Endurum<br>nano-Ra | FIREX         |
| <b>Steel,<br/>low-alloyed</b>                           |    | nano-FIREX<br>Endurum<br>nano-Ra | nano-FIREX<br>Endurum<br>nano-Ra | nano-FIREX<br>TiN           | FIREX<br>nano-Si<br>nano-A  | FIREX<br>nano-Si<br>nano-A  | FIREX<br>TiCN |
| <b>Steel,<br/>alloyed</b>                               |    | nano-Si<br>nano-FIREX<br>TiAlN   | nano-Si<br>nano-FIREX<br>TiAlN   | nano-FIREX<br>TiN           | FIREX<br>nano-A<br>nano-Si  | FIREX<br>nano-A<br>nano-Si  | FIREX<br>TiCN |
| <b>Steel,<br/>hardened, &lt;55 HRC</b>                  |    | nano-Si<br>nano-FIREX<br>TiAlN   | nano-Si<br>nano-FIREX<br>TiAlN   |                             | nano-Si<br>nano-A<br>TiAlN  | nano-Si<br>nano-A<br>TiAlN  |               |
| <b>Steel,<br/>hardened, 55–65 HRC</b>                   |    | nano-Si<br>nano-FIREX<br>TiAlN   | nano-Si<br>nano-FIREX<br>TiAlN   | bright                      | nano-Si<br>nano-A           | nano-Si<br>nano-A           |               |
| <b>Steel,<br/>stainless and<br/>acid-resistant</b>      |    | nano-A<br>Sirius<br>Endurum      | nano-A<br>Sirius<br>Endurum      | Sirius<br>nano-FIREX<br>TiN | nano-A<br>Sirius<br>FIREX   | nano-A<br>Sirius<br>FIREX   | FIREX         |
| <b>Cast iron</b>                                        |    | nano-Si<br>nano-FIREX<br>nano-A  | nano-Si<br>nano-FIREX<br>nano-A  | nano-FIREX                  | nano-Si<br>FIREX<br>nano-A  | nano-Si<br>FIREX<br>nano-A  | FIREX<br>TiCN |
| <b>Nickel-based alloys<br/>(i.e. Inconel)</b>           |    | nano-A<br>nano-Si<br>nano-FIREX  | nano-A<br>nano-Si<br>nano-FIREX  | nano-FIREX                  | nano-A<br>nano-Si<br>Zenit  | nano-A<br>nano-Si           | FIREX         |
| <b>Titanium/titanium-alloys</b>                         |    | Zenit<br>nano-A                  | Zenit<br>nano-A                  | nano-FIREX                  | Zenit<br>nano-A             | Zenit<br>nano-A             | FIREX         |
| <b>Cobalt-chromium-alloys</b>                           |  | nano-A<br>nano-Si<br>nano-FIREX  | nano-A<br>nano-Si<br>nano-FIREX  |                             | nano-A<br>nano-Si<br>FIREX  | nano-A<br>nano-Si<br>FIREX  |               |
| <b>Precious metals</b>                                  |  | nano-A                           | nano-A                           |                             | nano-A                      | nano-A                      |               |
| <b>Aluminium-wrought<br/>alloys</b>                     |  | bright                           | bright                           |                             | bright<br>Zenit             | bright<br>Zenit             | bright        |
| <b>Aluminium-cast alloys<br/>(&lt;12% Silizium)</b>     |  | bright<br>Zenit                  | bright<br>Zenit                  | bright<br>Zenit             | Zenit                       | Zenit                       | bright        |
| <b>Aluminium-cast alloys<br/>(≥12% Silizium)</b>        |  |                                  |                                  |                             |                             |                             |               |
| <b>Copper/bronze/brass</b>                              |  |                                  |                                  | TiN                         |                             |                             | TiN           |
| <b>Ceramics</b>                                         |  |                                  |                                  |                             |                             |                             |               |
| <b>Plastics, not reinforced</b>                         |  |                                  |                                  |                             |                             |                             |               |
| <b>Plastics, fiber-reinforced</b>                       |  | nano-Si                          | nano-Si                          |                             | nano-Si                     | nano-Si                     |               |
| <b>Graphite</b>                                         |  |                                  |                                  |                             |                             |                             |               |

**Note:** The overview shows the general application recommendations for Guhring coatings.  
Prioritization is from top to bottom.

|                                                                                    | TAPPING       |                                                  | THREAD MILLING       |                | FLUTELESS TAPPING |             |             | REAMING           |                   |     |
|------------------------------------------------------------------------------------|---------------|--------------------------------------------------|----------------------|----------------|-------------------|-------------|-------------|-------------------|-------------------|-----|
|                                                                                    | CARBIDE       | HSS                                              | CARBIDE              |                | CARBIDE           | HSS         | CARBIDE     | HSS               |                   |     |
|                                                                                    | conv. coolant |                                                  | MQL                  |                | conv. coolant     |             | MQL         |                   | conv. coolant     |     |
|    |               | TiCN<br>TiAlN<br>TiN                             | TiCN                 | TiCN           | TiCN<br>TiN       | TiCN<br>TiN | TiCN<br>TiN | Endurum<br>nano-A | Endurum<br>nano-A | TiN |
|    |               | TiCN<br>TiAlN<br>TiN                             | TiCN                 | TiCN           | TiCN<br>TiN       | TiCN<br>TiN | TiCN<br>TiN | nano-A<br>Endurum | nano-A<br>Endurum | TiN |
|    |               | TiCN<br>TiAlN<br>TiN                             | TiCN                 | TiCN           | TiCN<br>TiN       | TiCN<br>TiN | TiCN<br>TiN | nano-A<br>Endurum |                   | TiN |
|    |               | TiCN                                             | TiAlN                | TiAlN          |                   |             |             | nano-A            | nano-A            |     |
|    | TiCN          |                                                  | TiAlN                | TiAlN          |                   |             |             | nano-Si           |                   |     |
|    |               | Sirius <sup>1</sup><br>TiAlN <sup>2</sup><br>TiN | TiCN                 | TiCN           | TiCN<br>TiN       | TiCN<br>TiN | TiCN<br>TiN | nano-A            | nano-A            | TiN |
|    | TiAlN<br>TiCN | TiAlN                                            | TiAlN<br>TiCN<br>TiN | TiCN           | TiCN              | TiCN<br>TiN | TiCN<br>TiN | nano-Si           | nano-Si           | TiN |
|    |               | TiCN<br>TiAlN                                    | TiCN                 | TiCN           | TiCN              | TiCN        | TiCN        | nano-A            |                   | TiN |
|    |               | TiCN<br>TiAlN                                    | TiCN                 | TiCN           | TiCN              | TiCN        | TiCN        | Zenit<br>nano-A   |                   | TiN |
|  | bright        | bright                                           |                      | TiCN           | TiCN              |             |             | nano-A            |                   | TiN |
|  |               |                                                  |                      |                |                   |             |             | nano-A            | nano-A            | TiN |
|  | bright        | bright                                           | bright               | bright         | bright            |             |             |                   |                   |     |
|  | TiCN          | TiCN                                             | TiCN                 | TiCN<br>bright | TiCN<br>bright    | TiCN        | TiCN        | TiCN              |                   |     |
|  | TiCN          | TiCN                                             | TiCN                 | TiCN           | TiCN              |             |             |                   |                   |     |
|  | bright        | bright                                           | bright               | bright         |                   |             |             | bright            |                   |     |
|  |               |                                                  |                      |                |                   |             |             |                   |                   |     |
|  | bright        | bright                                           | bright               | bright         | bright            |             |             |                   |                   |     |
|  | TiCN          | TiCN                                             |                      | TiCN           | TiCN              |             |             |                   |                   |     |
|  |               |                                                  |                      |                |                   |             |             |                   |                   |     |

<sup>1</sup> for through hole, <sup>2</sup> for blind hole

Detailed information on the individual coatings can be found from page 19.

**GUHRING**

**GUHRING**

9  
8  
7  
6  
5  
4  
3  
2  
1



**nano-Si**  
Hard machining specialist



**Sirius**  
Stainless steel specialist



**nano-Ra**  
Steel specialist



**Zenit**  
Titanium specialist



**Endurum**  
Steel drilling specialist



# Hard Coating

Hard machining specialist

## nano-Si

Y

### Main application

Drilling / milling / reaming of hardened steels and cast iron



Hardened  
steel



Cast iron



► **structure**

multi-layer, nano-structure

► **color**

bronze

► **hardness**

5500 HV 0.05

► **application temperature**

< 1470°F

► **coating material**

TiAlSiN-based



With a hardness of 5500 HV Guhring's internally developed nano-Si coating is one of the hardest nitride coatings on the market. Guhring was able to achieve this extraordinary coating hardness thanks to the special nano composite structure with a TiAlN and TiAlSiN layer structure.

In these nano composite structures extremely fine TiAlN-crystals (<10 nm) are embedded in a glass-type silicon nitride matrix. This results in an extremely high hardness, that is retained even at high temperatures. As there are no continuous grain boundary networks in this structure, the diffusion of chip material is heavily impeded by the coating.

Therefore, the nano-Si coating provides an especially high wear-resistance and at the same time a high diffusion resistance.

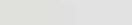
# Hard Coating

Titanium specialist

Zenit



***Main application***


Drilling / milling of titanium-alloys



Titanium/Ti-Alloys



Aluminum



► ***structure***

multi-layer, nano-structure

► ***color***

pale gold

► ***hardness***

2500 HV 0.05

► ***application temperature***

< 1290°F

► ***coating material***

TiAlN-ZrN based



With the pale gold Zenit multi-layer system the aluminum content of established coatings was specifically reduced and partly replaced with Zircon. This causes a minimized chemical reaction when coming into contact with titanium alloys.

Thanks to the special structure of the coating system the reaction tendency between material and coating should be significantly reduced. Furthermore, this coating also brings significant benefits for the machining of cast aluminum (<10% Si) and wrought aluminum alloys. The focus here is primarily the prevention of built-up edges between coating and material.

# Hard Coating

Stainless steel specialist

# Sirius



## ***Main application***

Tapping in stainless steels (through holes only)

Drilling / milling in stainless steels



Stainless



### ► ***structure***

multi-layer, nano-structure

### ► ***color***

pale gold

### ► ***hardness***

3400 HV 0.05

### ► ***application temperature***

< 1650°F

### ► ***coating material***

TiAlSiN-based with ZrN cover coating



When drilling in stainless the cutting edges of cutting tools are subjected to extreme stresses. A coating that's especially mechanically wear resistant with a low friction coefficient prevents damage to the cutting edges.

Another benefit is a very low chemical interaction with stainless steels. The tough, hard TiAlN functional coating guarantees a very high wear resistance.

The zirconium nitride cover coating significantly improves chip evacuation as the chemical reaction between coating and workpiece is reduced. Therefore, SIRIUS offers the best features for the machining of stainless materials.

# Hard Coating

## Steel specialist Endurum

### *Main application*

Drilling carbon, free-cutting and manganese steel  
at low and medium cutting speeds



#### ► **structure**

multi-layer with nano-layers,  
nano composite

#### ► **color**

copper

#### ► **hardness**

4000 HV 0.05

#### ► **application temperature**

< 1470°F

#### ► **coating material**

TiAlSiN based



Thanks to a nano-layer structure as well as reduced aluminum content Endurum was specifically adapted for the drilling of low-alloyed steels such as carbon, free-cutting and manganese-alloyed steels.

By adding silicon it forces a nano composite structure causing higher hardness. In addition, thanks to the composition the reaction tendency is significantly reduced. Particularly for low and medium cutting speeds it is the first choice for drilling operations.

# Hard Coating

Stainless steel & beyond

# nano-A

a

## *Main application*

Drilling/milling of stainless steels



Stainless Steel



Cast iron



Titanium/Nickel Alloys



► **structure**

multi-layer, nano-structure

► **color**

dark grey

► **hardness**

3800 HV 0.05

► **application temperature**

< 1650°F

► **coating material**

TiAlN / AlTiN layers



The TiAlN based nano-A coating has proven itself especially in the machining of stainless steels, but it is sometimes also applied for drilling and milling of cast iron, titanium, and nickel-based and cobalt chrome alloys. Its nano-layered structure delays the fracture growth.

# Hard Coating

Steel specialist

## nano-Ra



### ***Main application***

Drilling/milling of carbon, free-cutting as well as low-alloyed steels



- ***structure***  
multi-layer, graded
- ***color***  
pale gold
- ***hardness***  
3300 HV 0.05
- ***application temperature***  
< 1470°F
- ***coating material***  
TiN/TiAlN based  
with ZrN cover coating



Guhring's nano-Ra coating relies on a proven TiN and TiAlN multi-layer structure combined with a ZrN based cover coating.

The multi-layer structure guarantees good values of hardness and toughness reducing the mechanical wear. The cover coating minimizes the chemical reaction between the coating and the material to be machined, thereby reducing the development of edge build-up and the adhesion of the material to the cutting edge as much as possible.

# Hard Coating

Well-rounded champion

## FIREX®/ nano-FIREX®

F

### ***Main application***

Drilling/milling of steel and cast iron



Steel      Cast iron



- ▶ ***structure***  
multi-layer, nano-structure
- ▶ ***color***  
red-violet
- ▶ ***hardness***  
3000 - 3300 HV 0.05
- ▶ ***application temperature***  
< 1470°F
- ▶ ***coating material***  
TiN / TiAlN nano layers



*FIREX coating was introduced at the end of the 90's. Its further development, nano-FIREX was brought to market in 2008. Along with titanium and nitrogen, the coating also contains aluminum, and distinguishes itself with a higher hardness and improved thermo-chemical resistance. It is suitable for coating both HSS and carbide. Today it is the #1 choice for drilling and milling in steels.*

# Hard Coating

Low friction, high hardness & toughness

TiCN

C

***Main application***

Tapping/forming/thread milling



Stainless



Steel



Cast iron



► ***structure***

monolayer

► ***color***

grey violet

► ***hardness***

3000 HV 0.05

► ***application temperature***

< 750°F

► ***coating material***

Titanium Carbonitride

Due to the additional embedding of carbon, TiCN distinguishes itself with a higher toughness and hardness, and a reduced friction coefficient compared to TiN. With its high wear resistance it is very well suited for abrasive threading applications.

# Hard Coating

Superhard coating for steels and cast iron

TiAIN 

## *Main application*

Drilling, milling and threading in alloy steels or cast iron



Steel, alloyed  
or hardened



Cast iron



- **structure**  
monolayer
- **color**  
black violet
- **hardness**  
3300 HV 0.05
- **application temperature**  
< 1470°F
- **coating material**  
Titanium Aluminum Nitride



The TiAIN coating with it's titanium-aluminum structure displays similar characteristics to FIREX and nano-FIREX. Due to it's single-layer structure it is especially suitable for coating micro-precision tools.

# Hard Coating

Universally applicable, time-tested

TiN S

## *Main application*

For HSS and carbide tooling in drilling and tapping applications



Stainless



Steel



Copper/Bronze/Brass iron



- **structure**  
monolayer
- **color**  
gold
- **hardness**  
2400 HV 0.05
- **application temperature**  
< 1100°F
- **coating material**  
Titanium Nitride

*Guhring introduced the world's first TiN coated twist drill in 1981. Today, TiN is still utilized as a universal, cost efficient coating that can be applied for drilling, milling, and tapping on both HSS and carbide cutting tools.*

# Soft Coating

Lubricating top-layer

## MolyGlide



### Main application

Minimizes friction and adds lubricity, especially in dry machining



Stainless



Steel



Copper/Bronze/Brass iron



- **structure**  
monolayer
- **color**  
silver
- **friction coefficient (fetting)**  
0.10
- **application temperature**  
< 1470°F
- **coating material**  
MoS<sub>2</sub> - based

MolyGlide is used in applications where increased lubricity or a very low coefficient of friction will be beneficial, for example, when machining aluminum or other "gummy" materials. This unique MoS<sub>2</sub> coating is sometimes referred to as Teflon®-like in that nothing sticks to the coating. MolyGlide can be applied on uncoated surfaces such as injection mold parts, or on top of any hard coatings to provide an extra layer of lubricity.

# IN-HOUSE **GUHRING**



Geometry



Tool material



Coating



Machinery and  
plant engineering



**Guhring, Inc. Main Office**  
1445 Commerce Avenue  
Brookfield, WI 53045  
Tel (262) 784-6730 (800) 776-6170  
Fax (262) 784-9096

**East Coast Reconditioning Facility**  
121 W Dudley Town Rd.  
Bloomfield, CT 06002

**West Coast Distribution Center and Reconditioning Facility**  
15581 Computer Ln  
Huntington Beach, CA 92649

**Michigan Manufacturing and Reconditioning Facility**  
29550 W.K. Smith Rd. Suite B  
New Hudson, MI 48165

**Guhring Corp. (Canada)**  
20 Steckle Place, Unit #14  
Kitchener, ON N2E 2C3  
Tel (519) 748-9664 (800) 463-5555  
Fax (519) 748-2954